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Adaptive natural gradient descent(ANGD) method realizes natural gradient descent(NGD) without needing
to know the input distribution of learning data and reduces the calculation cost from a cubic order to a square
order. However, no performance analysis of ANGD has been done. We have developed a statistical-mechanical
theory of the simplified version of ANGD dynamics for soft committee machines in on-line learning; this
method provides deterministic learning dynamics expressed through a few order parameters, even though
ANGD intrinsically holds a large approximated Fisher information matrix. Numerical results obtained using
this theory were consistent with those of a simulation, with respect not only to the learning curve but also to
the learning failure. Utilizing this method, we numerically evaluated ANGD efficiency and found that ANGD
generally performs as well as NGD. We also revealed the key condition affecting the learning plateau in
ANGD.
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I. INTRODUCTION

Feed-forward multilayer perceptrons are known to have
difficulty determining their parameters using a set of training
data. This is because of the nonlinearity of their activation
functions, which prevents the use of analytical estimation
methods; e.g., maximum likelihood estimation. An alterna-
tive approach is to use the stochastic gradient descent, which
introduces an error function for a given learning sample in a
supervised learning framework and adjusts the network pa-
rameters step by step to reduce the error.

Steepest gradient descent(SGD) method, equivalent to
back-propagation, is a simple and useful gradient descent
method, but it suffers from a learning plateau, which is a
long learning period with poor error reduction. This learning
plateau is caused by the permutation symmetry(i.e., an ex-
change of two hidden units in the same layer has no effect on
the network output) because it creates a saddle structure in
the generalization error function[1,2]. Moreover, the plateau
period is prolonged when the weight vectors of hidden units
in the teacher network are correlated[3].

In contrast, previous works have shown that natural gra-
dient descent(NGD) [4,5] has almost optimal learning per-
formance(Fisher efficiency). NGD does not have any pla-
teau if the learning rate is set low enough[6]. NGD is also

unaffected by the correlation between the teacher weight
vectors[3]. From a general view, one of the greatest advan-
tages of NGD could be its independence of the parametriza-
tion of a given network model. Another advantage may be
that the premultiplier of the gradient of the error — the in-
verse of the Fisher information matrix — is not dependent on
learning data or the error function and is necessarily positive
definite. There are similar methods that use the inverse of the
Hessian matrix as the premultiplier. However, these methods
may be unstable, because their premultiplier intrinsically de-
pends on learning data and is not necessarily positive definite
[7].

Adaptive natural gradient descent(ANGD) [8,9] is an at-
tractive form of NGD with respect to both the calculation
cost and the input distribution of training data. ANGD re-
duces the calculation cost from a cubic order of the number
of network parameters to a square order, and does not need
to know the input distribution. Moreover, ANGD retains
some of the advantages of NGD, e.g., its approximated in-
verse of the Fisher information matrix is necessarily positive
definite. However, no previous research has quantified the
learning performance of ANGD with respect to its practical
applicability.

In this paper, we evaluate the learning efficiency of a
simplified version of ANGD for soft committee machines.
(Soft committee machines consist of simplified two-layer
perceptrons.) ANGD is intrinsically elaborated for on-line
learning. On-line learning[7,10] facilitates analysis because
it uses each learning sample only once, so the network state
is independent of each learning sample. We employed
statistical-mechanical techniques which extract order param-
eters and make the stochastic learning dynamics converge
towards deterministic at the large limit of the input dimen-
sion N [1,2].

II. MODEL

We define teacher and student network models, stochastic
gradient learning rules of the student parameters(SGD,
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NGD, and ANGD), and an adaptive estimation of the inverse
of the Fisher information matrix for ANGD. We use a soft
committee machine withM hidden units as a teacher net-
work and one withK hidden units as a student network:

fBsjd ; o
k=1

M

gsBk
Tjd, s1d

fJsjd ; o
k=1

K

gsJk
Tjd, s2d

where the superscriptT denotes the transpose,BkPRN and
JkPRN are column vectors that represent thekth weight vec-
tors for N-dimensional inputjPRN, andg denotes the acti-
vation function. We define the probability density function
for each network for NGD and ANGD. The function for the
teacher network is defined with inputj and outputz as

pBsj,zd ; psjdd„z − fBsjd…, s3d

wherepsjd is the input distribution andd is the Dirac delta
function. The probability density function for the student net-
work is defined with inputj and outputz8 using normal
distributionN(fJsjd ,1):

pJsj,z8d ; psjd
1

Î2p
expF−

1

2
hz8 − fJsjdj2G . s4d

The student distribution is modified incrementally by adjust-
ing its parameter vectorJ;fJ1

T,J2
T, .. ,JK

TgTPRKN to approxi-
mate the teacher distribution.

The error of student output from teacher output is defined
as

eJsjd ;
1

2
hěJsjdj2, s5d

where

ěJsjd ; fJsjd − fBsjd. s6d

The generalization error is also defined as the expected error:

egsJd ; keJsjdlj, s7d

where kxly denotes the expectation ofx with respect to a
random variabley.

The parameter update rule in gradient descent can be writ-
ten, in general, asJ : =J+DJ, where

DJ = −
h

N
M=JeJsjd = −

h

N
ěJsjdM = f , s8d

while M PRNK3NK, h /N.0 is a scaled update rate,= de-
notes the gradient, and=f PRNK denotes=JfJsjd. We can
implement SGD by settingM = I (unit matrix), NGD by set-

ting M =G−1 [4], and ANGD by settingM =Ĝ−1 [8,9]. G
denotes the Fisher information matrix of parameter vectorJ
defined as

G ; kf=J ln pJsj,z8dgf=J ln pJsj,z8dgTlhj,z8j=kf= fgf= fgTlj,

s9d

while Ĝ is an adaptively approximated matrix ofG obtained

by ANGD. The update rule ofĜ is given asĜ: =Ĝ+DĜ,
where

DĜ ;
r

N
s− Ĝ + f= fgf= fgTd, s10d

while 0,r /N,1 is an update rate. ANGD does not use
the input distributionpsjd, but shares each input samplej
with the update rule ofJ, and approximatesG step by step.
Realistically, rather than Eq.(10), ANGD adopts an
exactly equivalent rule using the Sherman-Morrison formula

Ĝ−1: =Ĝ−1+DĜ−1, where

DĜ−1 =

r

N

1 −
r

N
3Ĝ−1 −

Ĝ−1f= fgf= fgTĜ−1

1 +
r

N
hf= fgTĜ−1f= fg − 1j4 .

s11d

Equation(11) offers the great advantage that we can omit the
expensive matrix inversionfOshNKj3dg and achieve lower

calculation costOshNKj2d. Here,Ĝ−1 is always positive defi-
nite and symmetric if the initial value is positive definite and
symmetric. For an initial value, we chooseI for simplicity.
ANGD is always applicable if SGD is applicable, because
=f is required even in the case of SGD, whereas NGD can-
not always be applied when the input distribution is un-
known.

Whenr!1, Eq. (11) can be reduced to a simple form

DĜ−1 =
r

N
sĜ−1 − Ĝ−1f= fgf= fgTĜ−1d. s12d

This approximation was introduced by Amariet al. [8]. In
this paper, we investigate this simplified version of ANGD in
detail under the assumption of smallr. We also elucidate
what happens when this assumption is violated.

III. THEORETICAL RESULTS

In this section, we show the order parameter expression of
the system dynamics in ANGD, where we use both the usual
and newly introduced order parameters. With respect to SGD
and NGD, the usual order parameters are sufficient to explain
the system state because the system has rotation invariance
under the assumption of Gaussian inputfj,Ns0,I dg, i.e.,
the system is equivalent to the one with rotated weight vec-
tors Ji ,Bi. The usual order parameters can also describe the
Fisher information matrixG and G−1. We need new order
parameters for ANGD, though, to describe the approximated

inverse of the Fisher information matrixĜ−1. To make the
present paper self-contained, we first briefly summarize the
derivation of the usual order parameter equations of the soft
committee machines for SGD[1,2] and NGD[5,6]. Then, we
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explain the order parameter expression for ANGD.

A. Generalization error

The usual order parameters are the inner products among
all weight vectors:

Q;fQijgi,j=1,. . .,K, Qij ;Ji
TJ j ,

R;fRijgi=1,. . .,K,j=1,. . .,M , Rij ;Ji
TB j ,

T;fTijgi,j=1,. . .,M , Tij ;Bi
TB j . s13d

Here,QPRK3K means the inner products matrix for the stu-
dent weight vectors, whileRPRK3M means the matrix con-
taining the inner products between the student and teacher
weight vectors.Q andR are updated according to the updat-
ing of J. Here,TPRM3M means the inner products among
the teacher weight vectors; this is fixed. The square length of
each input and the inner products between the input and the
weight vectors are temporarily used to describe the micrody-
namics:

x;jTj,

x;fxigi=1,. . .,K, xi ;Ji
Tj,

y;fyigi=1,. . .,M , yi ;Bi
Tj. s14d

Here,xPR stochastically converges toNsx→
P

Nd at the large
limit of N. Also, xPRK andyPRM are random vectors de-
pendent on inputj. The distribution ofz;fxT,yTgTPRK+M

is determined using the order parametersz,Ns0,Cd, where

C ; FQ R

RT T
G P RhK+Mj3hK+Mj. s15d

We can then substitute the order parameters and these
random variables for allN-dimensional vectorsBi ,Ji, andj.
The number of order parameters is sufficiently small because
it does not depend onN, and this facilitates system analysis.
For example, the generalization error can be expressed as

egsCd =
1

2
E dzpszdH o

k=1

K+M

ckgszkdJ2

, s16d

whereck is 1 if køK or −1 if k.K. Here and hereafter, we
assumegsxd=erfsx/Î2d, where erfsxd;2/Îpe0

xdte−t2 is the
conventional error function. The generalization error can
then be rewritten as an analytical function[1],

egsCd =
1

p
o
i,j=1

K+M

cicjarcsin
Cij

ÎhCii + 1jhCjj + 1j
. s17d

B. Steepest gradient descent

The dynamics of the order parameters for SGD can be
expressed using the order parameters themselves[1,2]. From
Eq. (8), the update rule for parameterJ is

DJi = −
h

N
dij, s18d

where

d ; fdigi=1,. . .,K, di ; ěJszdg8sxid, s19d

while g8 is the derivative ofg. Thus, the update rules of the
order parameters can be written as

DRij = fDJigTB j = −
h

N
diyj ,

DQij = fJi + DJigTfJ j + DJ jg − Ji
TJ j=DSij + DSji + Dfi j ,

s20d

where

DSij ; fDJigTJ j = −
h

N
dixj ,

Dfi j ; fDJigTDJ j =
h2x

N2 did j . s21d

Here and hereafter, we useS;fSijgi,j=1,. . .,KPRK3K and f
;ffi jgi,j=1,. . .,KPRK3K for convenience.

Next, we introduce timea and specify that time 1/N is
consumed by each update. At the large limit ofN, the dy-
namics of the order parameters become continuous and de-
terministic. For example, the value ofRij over an infinitesi-
mal time intervalda after current timea is not a random
variable, although eachDRij is a random variable:

Rij
sa+dad = Rij

sad + lim
N→`

o
m=0

Nda−1

DRij
sa+m/Nd=Rij

sad − hkdiyjlzda.

s22d

Therefore, the time derivation ofRij is

dRij
sad

da
= − hkdiyjlz. s23d

This expectation with respect toz can be solved analytically
[1]. The dynamics ofQij can be determined similarly, and we
get

dQij

da
=

dSij

da
+

dSji

da
+

dfi j

da
, s24d

where

dSij

da
= − hkdixjlz,

dfi j

da
= h2kdid jlz. s25d

The order parameter dynamics suggest that, at the large
limit of N, Ji necessarily moves out of the current direct sum
subspace made by all the weight vectorsJ1, .. ,JK ,B1, .. ,BM,
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although it mainly moves toward the subspace made by
B1, .. ,BM (Fig. 1). The direction of this orthogonal move-
ment to that subspace is always chosen randomly, while the
time derivative of the square distance of this movement is
represented asdfi j /da in Eq. (24). This orthogonal move-
ment also appears in NGD and ANGD as thedfi j /da term

included in the dynamics ofQij , and, moreover, in theĜ−1

dynamics for ANGD.

C. Natural gradient descent

The dynamics for NGD can also be expressed through the
order parameters. In this section, we first determine the

Fisher information matrixG and its inverse,G−1, by using
only Q. Then we derive the motion equations of the order
parameters.

Generally, for anyGi j PRK3K, thesi , jd block of G can be
expressed with both the student weight vectorsJ8
;fJ1, . . . ,JKgPRN3K and all the orthonormal bases of the
null space of the student weight vectorsVPRN3hN−Kj, which
satisfiesVTV= I andJ8TV=0, as

Gi j = li j I + fJ8,VgFLi j Li j8

Li j9 Li j-
GfJ8,VgT, s26d

where li j PR , Li j PRK3K , Li j8 PRK3hN−Kj , Li j9 PRhN−Kj3K ,
andLi j-PRhN−Kj3hN−Kj (to be exact,li j is verbose). We can
then rewrite Eq.(26) as

Gi j = li j I + J8Li jJ8T + Ei j , s27d

Ei j ; fJ8,VgF 0 Li j8

Li j9 Li j-
GfJ8,VgT, s28d

whereEi j PRN3N.
We next proveEi j =0; in other words,li j and Li j are

sufficient parameters to expressG. By multiplying the iden-
tity matrix fJ8 ,VgffJ8 ,VgTfJ8 ,Vgg−1fJ8 ,VgT, we can rewrite
Gi j as

Gi j = kf= f igf= f jgTlj

= fJ8,VgffJ8,VgTfJ8,Vgg−1fJ8,VgTkf= f igf= f jgTljfJ8,VgffJ8,VgTfJ8,Vgg−1fJ8,VgT

= fJ8,VgFQ−1 0

0 I
GKg8sxidg8sxjdFxxT xvT

vxT vvTGL
j
FQ−1 0

0 I
GfJ8,VgT

= fJ8,VgFQ−1 0

0 I
GKg8sxidg8sxjdFxxT 0

0 I
GL

x
FQ−1 0

0 I
GfJ8,VgT

= fJ8,VgFQ−1kg8sxidg8sxjdxxTlxQ
−1 0

0 kg8sxidg8sxjdlxI
GfJ8,VgT

= kg8sxidg8sxjdlxVVT + J8fQ−1kg8sxidg8sxjdxxTlxQ
−1gJ8T

= kg8sxidg8sxjdlxI + J8fQ−1kg8sxidg8sxjdxxTlxQ
−1 − kg8sxidg8sxjdlxQ

−1gJ8T, s29d

where =f i ;g8sxidj, while v;VTj,Ns0,I d. We used
kg8sxidg8sxjdxvTlj=kg8sxidg8sxjdxlxkvTlv=0 and kvvTlj= I .
Thus, we can proveEi j =0 by letting

li j ; kg8sxidg8sxjdlx =
2

p
UQii + 1 Qij

Qij Qjj + 1
U−1/2

, s30d

Li j ; Q−1kg8sxidg8sxjdxxTlxQ
−1 − li jQ

−1

= − li jfei,ejgFQii + 1 Qij

Qij Qjj + 1
G−1

fei,ejgT, s31d

whereuu denotes a determinant, whileei PRK is a unit vector

FIG. 1. Intuitive schema of the learning dynamics at the large
limit of N. In the case ofK=M =1, J1 mainly moves in the current
subspace made byJ1 andB1 according to the gradient of the error,
but necessarily moves out of this subspace into the null space, or
the complementary subspace, ofJ1 andB1, because the small fluc-
tuation ofJ1 in each dimension is summed up resulting in the non-
zero termf1,1 in Eq. (25).
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whoseith element is 1.li j and Li j are expressed with cer-
tainty by Q.

Next, we determineG−1 using a similar style to Eq.(27):

fG−1gi j = ui j I + J8Qi jJ8T, s32d

whereui j PR and Qi j PRK+K correspond toli j and Li j , re-
spectively. If we temporarily adopt normalized expressions
of Li j andQi j , defined as

L̃i j ; Q1/2Li jQ
1/2 + li j I , s33d

Q̃i j ; Q1/2Qi jQ
1/2 + ui j I , s34d

matrix multiplication will be simplified, e.g.,

Gi jGkl = sli jfI − UQ−1UTg + UQ−1/2L̃i jQ
−1/2UTd

3 flklfI − UQ−1UTg + UQ−1/2L̃klQ
−1/2UTg

= li jlklfI − UQ−1UTg + UQ−1/2L̃i jL̃klQ
−1/2UT.

s35d

Utilizing this normalization, we can easily obtain

u = l−1, Q̃ = L̃−1, s36d

where l;fli jgi,j=1,..,K and u;fui jgi,j=1,..,K are RK3K

symmetric matrices, while L;fLi jgi,j=1,. . .,K , L̃

;fLi jgi,j=1,. . .,K , Q;fQi jgi,j=1,. . .,K, andQ̃;fQ̃i jgi,j=1,. . .,K are

RK23K2
symmetric matrices.

Finally, we obtain the order parameter dynamics for
NGD. In NGD, the rule for updatingJ is given by

DJi = −
h

N
o
k=1

K

dkGik
−1j. s37d

Hence, we obtain the time derivatives of the order param-
eters in a manner similar to that for SGD:

dRij

da
= − ho

k=1

K

fuikkdkxjlz + kdkx
TlzQik

TRjg,

dSij

da
= − ho

k=1

K

fuikkdkxjlz + kdkx
TlzQik

TQjg,

dfi j

da
= h2 o

k,l=1

K

uikkdkdllzul j ,

dQij

da
=

dSij

da
+

dSji

da
+

dfi j

da
, s38d

whereRj denotes thej th column ofR, and so on[6].

D. Dynamics of Ĝ−1 for ANGD

In this section, we derive the dynamics of the approxi-

mated inverse of the Fisher information matrixĜ−1 (from

here on, for simplicity we writeH instead ofĜ−1) in the
simplified version of ANGD. Unlike NGD, there are three
types of difficulties in ANGD.

(1) First is the dependence betweenJ and H, because
ANGD has two dynamics ofJ and H and they each share
input j. We introduce an approximation(two j rule) to ne-
gate this dependence.

(2) Second is the higher-order self-correlations ofH,
which originate from the update rule ofH itself. We negate
these infinite correlations by exploiting ther!1 assumption
of the simplified ANGD, becausenth-order self-correlation is
scaled byOsrnd.

(3) Third is the high complexity ofH; G and G−1 are
sufficiently characterized by the subspace of the student
weight vectors, whereasH is not. This complexity will be
managed in the following section.

First, we introduce twoj rule. From Eqs.(8) and(11), the
values ofJ and H for an infinitesimal time periodda after
current timea are

Jsa+dad = Jsad + o
m=0

Nda−1

DJstd

= Jsad −
h

N
o
m=0

Nda−1

eJstdsjstddH std = f std
std, s39d

H sa+dad = H sad + o
m=0

Nda−1

DH std = H sad + o
m=0

Nda−1

r8sH std − H std

3f= f std
stdgf= f std

stdgTH stdd

= h1 + r8jNdaH sad − o
m=0

Nda−1

h1 + r8jNda−1−mr8H std

3f= f std
stdgf= f std

stdgTH std, s40d

where h and r are Os1d with respect toN, r8;r /N/ s1
−r /Nd, andt;a+m /N, while =f sxd

syd denotes=JfJsjsydduJ=Jsxd.

These two equations show that bothJ andH include a com-
mon random vector=f std

std. Therefore,J and H become de-

pendent on each other. To negate this dependence, we intro-
duce an update rule—we draw twoj independently, one for
the J update and the other for theH update in each learning
step(two j rule)—so that this dependence disappears. Under
this two j rule, we can fixJ during da, and reduce Eq.(40)
to

H sa+dad = h1 + r8jNdaH sad − o
m=0

Nda−1

h1 + r8jNda−1−mH stdF stdH std,

s41d

whereF std;r8f=f sad
std gf=f sad

std gT. This two j rule will be vali-

dated in Sec. IV.
Next, we negate the higher-order self-correlations ofH.

We notice that this Eq.(41) is still difficult to solve, because
it includes highly self-correlated terms with respect to the old
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random matrixF st8d saøt8,td. For example, the most cor-
related term is

H sadF sadH sadF sa+1/NdH sadF sadH sadF sa+2/Nd . . . . s42d

However, we can ignore these terms includingnth order self-
correlationsnù2d, because they are at mostOsrnd and small
enough under the assumption ofr!1 for the simplified
ANGD. Therefore, we sum up only theOsr0d and Osr1d
terms:

H sa+dad = h1 + r8jNdaH sad + o
m=0

Nda−1

h1 + r8jNda−1−m

3 fh1 + r8jmH sadgF stdfh1 + r8jmH sadg. s43d

At the large limit ofN, Eq. (43) becomes

H sa+dad = erdafH sad + h1 − erdajH sadGHsadg, s44d

where we useoF →G (see Appendix A for further discus-
sion about the convergence ofF). Then, we obtain the dy-
namics ofH:

dH

da
= lim

da→0

H sa+dad − H sad

da
= rfH − HGHg. s45d

We also obtain the usual order parameter dynamics. As
the update equation of eachJi for ANGD is

DJi = −
h

N
o
k=1

K

dkH ikj, s46d

we can easily get

dRij

da
= − ho

k=1

K

kdkj
TH ik

TB jlj,

dSij

da
= − ho

k=1

K

kdkj
TH ik

TJ jlj,

dfi j

da
=

h2

N
o

k,l=1

K

kdkdlj
TH ik

TH jljlj,

dQij

da
=

dSij

da
+

dSji

da
+

dfi j

da
. s47d

These order parameter dynamics still includeN-dimensional
vectors andN3N matrices, but we obtain the order param-
eter dynamics expressed by the order parameters themselves
in the following section.

E. Order parameter representation for HÆĜ−1

In this section, we extract the new order parameters from
H. To characterizeH, we should consider the history ofJ,
which includes two types of movements.

(1) First is the approach to the corresponding teacher vec-
tors. To deal with this movement, we use not only the student
weight vectors, but also the teacher weight vectors to express

H, althoughG andG−1 are sufficiently expressed by only the
current student weight vectors.

(2) Second is the escape from the subspace made by all
the weight vectors. The direction of this movement is ran-
dom, although its speed is deterministic as specified by the
df term. The order parameter expressions of SGD and NGD
do not suffer from this randomness because they discard it by
exploiting the rotation invariance of the system. In ANGD,
however, this randomness upsets the order parameter expres-
sion of H; it produces a hysteresis component ofH or the
residual fluctuating term(E as introduced below) whenH is
expressed through order parameters. This fluctuation term is
negligible at the large limit ofN, but its square is not. Here,
we realistically consider theH dynamics by taking the sec-
ond powers of this fluctuation term into account, and obtain
an effective order parameter expression ofH. This theoreti-
cal result will be numerically validated in the following
section.

First, we expressH in a similar manner toG in Eq. (27)
as

H i j = vi j I + fU,VgFVi j Vi j8

Vi j9 Vi j-
GfU,VgT s48d

=vi j I + UVi jU
T + Ei j , s49d

Ei j ; fU,VgF 0 Vi j8

Vi j9 Vi j-
GfU,VgT, s50d

and proveEi j is negligible. Note that we use not only the
student weight vectors, but also the teacher weight vectors;
i.e., we useU;fJ1, . . . ,JK ,B1, . . . ,BMgPRN3hK+Mj instead
of J8;fJ1, . . . ,JKg. This is because the student vectors move
toward the corresponding teacher vectors andH holds the
component made from the old student vectors. Here,V
PRN3hN−K−Mj is redefined as the orthonormal bases of the
null space ofU rather thanJ8, which satisfiesVTV= I and
UTV=0. Here,vi j PR andVi j PRhK+Mj3hK+Mj are the candi-
dates for the new order parameters. Also,Vi j8
PRhK+Mj3hN−K−Mj, Vi j9 PRhN−K−Mj3hK+Mj, and Vi j-
PRhN−K−Mj3hN−K−Mj are large matrices. AsH =fH i jgi,j=1,. . .,K

is a symmetric matrix, v;fvi jgi,j=1,. . .,K , V
;fVi jgi,j=1,. . .,K , andV-;fVi j-gi,j=1,. . .,K are also symmet-
ric matrices, while V8;fVi j8 gi,j=1,. . .,K and V9
;fVi j9 gi,j=1,. . .,K are symmetric with respect to each other.

Next, we find appropriate dynamics of
v , V , V8 , V9, andV- that satisfy the dynamics ofH
given by Eq.(45). For convenience, we consider an infini-
tesimal change ofH i j from Eq. (45),

dH i j = rfH − HGHgi jda. s51d

By substituting Eq.(48) for H, we easily obtain the decom-
posed form ofdH i j as

dH i j = gi j I + fU,VgFGi j Gi j8

Gi j9 Gi j-
GfU,VgT, s52d

where
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gi j = rfv − vlvgi jda, s53d

Gi j = rC−1/2fṼ − ṼL̃Ṽ − ṽ + ṽl̃ṽ − Ṽ8L̃Ṽ9gi jC
−1/2da,

s54d

Gi j8 = rC−1/2fṼ8 − ṼL̃Ṽ8 − Ṽ8l̃ṽ − Ṽ8l̃V-gi jda,

s55d

Gi j9 = rfṼ9 − Ṽ9L̃Ṽ − ṽl̃Ṽ9 − V-l̃Ṽ9gi jC
−1/2da,

s56d

Gi j- = rfV- − Ṽ9L̃Ṽ8 − ṽl̃V- − V-l̃ṽ − V-l̃V-gi jda,

s57d

where Ṽ;fṼi j ;C1/2Vi jC
1/2+vi j I gi,j=1,. . .,K, Ṽ8;fṼi j8

;C1/2Vi jgi,j=1,. . .,K, and Ṽ9;fṼi j ;Vi jC
1/2gi,j=1,. . .,K are in-

troduced to simplify multiplications, while,l̃=fli j I gi,j=1,. . .,K

andṽ=fvi j I gi,j=1,. . .,K are matrices extended to an appropriate

size; e.g., the same size as that ofV or V-. L̃ is redefined as

L̃ ; FL̃i j ; C1/2FLi j 0

0 0
GC1/2 + li j IG

i,j=1,. . .,K

.
The infinitesimal change of Eq.(48) is given by

dH i j = hdvi jjI + WFVi j + dVi j Vi j8 + dVi j8

Vi j9 + dVi j9 Vi j- + dVi j-
GWT − fU,Vg

3FVi j Vi j8

Vi j9 Vi j-
GfU,VgT, s58d

where W;fU+dU , V+dVgPRN3N. Note that the con-
ventional total differential is not applicable becauseU is not
differentiable. We also decompose this matrix byW rather
than fU ,Vg becauseU andV are also moving:

dH i j = l i j I + WFL i j L i j8

L i j9 L i j-
GWT. s59d

Here,L i j , L i j8 , L i j9 , andL i j- are easily determined by calcu-
lating

FL i j L i j8

L i j9 L i j-
G ; fWTWg−1WTfdH i j − hdvi jjI gWfWTWg−1.

s60d

Note thatWfWTWg−1WT is an identity matrix. By erasing
small terms such asOsd2d, we obtain the following equation:

dH i j = l i j I + fU,VgFL i j L i j8

L i j9 L i j-
GfU,VgT, s61d

where

l i j = dvi j , s62d

L i j = dVi j + C−1fdC − dOgVi j + Vi jfdC − dOgTC−1

− C−1fdUgTVVi j9 − Vi j8VTfdUgC−1, s63d

L i j8 = dVi j8 + C−1fdC − dOgVi j8 − Vi j8VTfdVg

− C−1fdUgTVVi j- − Vi jU
TfdVg, s64d

L i j9 = dVi j9 − fdVgTVVi j9 + Vi j9 fdC − dOgTC−1

− fdVgTUVi j − Vi j-VTfdUgC−1, s65d

L i j- = dVi j- − fdVgTVVi j- − Vi j-VTfdVg

− fdVgTUVi j8 − Vi j9UTfdVg, s66d

where we used

WTW = FC + dC 0

0 I
G , s67d

WTfU,Vg = FC + dO fdUgTV

fdVgTU I + fdVgTV
G , s68d

where

C ; UTU = FQ R

RT T
G P RhK+Mj3hK+Mj,

dC ; fU + dUgTfU + dUg − C = F dQ dR

dRT 0
G ,

and

dO ; fdUgTU = FdS dR

0 0
G .

To realize dH of Eq. (52) through Eq.(61) under the
given U ,V ,dU, anddV, l i j =gi j and

FL i j L i j8

L i j9 L i j-
G = FGi j Gi j8

Gi j9 Gi j-
G

should be satisfied. We then easily obtain an appropriate in-
finitesimal change ofv ,V ,V8 ,V9, andV- as

dvi j = rfv − vlvgi jda, s69d

dVi j = rC−1/2fṼ − ṼL̃Ṽ − ṽ + ṽl̃ṽ − Ṽ8l̃Ṽ9gi jC
−1/2da

− C−1fdC − dOgVi j − Vi jfdC − dOgTC−1

+ C−1fdUgTVi j9 + Vi j8VTfdUgC−1, s70d

dVi j8 = rC−1/2fṼ8 − ṼL̃Ṽ8 − Ṽ8l̃ṽ − Ṽ8L̃V-gi jda

− C−1fdC − dOgVi j8 + Vi j8VTfdVg + C−1fdUgTVVi j-

+ Vi jU
TfdVg, s71d
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dVi j9 = rfṼ9 − Ṽ9L̃Ṽ − ṽl̃Ṽ9 − V-l̃Ṽ9gi jC
−1/2da

+ fdVgTVVi j9 − Vi j9 fdC − dOgTC−1 + fdVgTUVi j

+ Vi j-VTfdUgC−1, s72d

dVi j- = rfV- − Ṽ9L̃Ṽ8 − ṽl̃V- − V-l̃ṽ − V-l̃V-gi jda

+ fdVgTVVi j- + Vi j-VTdV + fdVgTUVi j8 + Vi j9UTfdVg.

s73d

We notice that, with respect toN, the orders of each ele-
ment of the matricesv, V, V8, V9, and V- are at most
Os1d, Os1d, Os1/ÎNd, Os1/ÎNd, andOs1/Nd (see Appendix
B). This suggests thatE is negligible at the large limit ofN.
Actually, if we explicitly assume that the escape directions of
the student vectors are completely random,kfI
−UC−1UTgdUlj=0 or equivalentlykVTdUlj=0 or kdVlj=0,
the time integrations of the terms includingUTdV, VTdU,
andVTdV converge to zero, and we obtain

dvi j

da
= rfv − vlvgi j , s74d

dVi j

da
= rC−1/2fṼ − ṼL̃Ṽ − ṽ + ṽl̃ṽ − Ṽ8L̃Ṽ9gi jC

−1/2

− C−13 dS

da
+

df

da

dR

da

0 0
4

T

Vi j

− Vi j3 dS

da
+

df

da

dR

da

0 0
4C−1, s75d

dVi j8

da
= rC−1/2fṼ8 − ṼL̃Ṽ8 − Ṽ8l̃ṽ − Ṽ8l̃V-gi j

− C−13 dS

da
+

df

da

dR

da

0 0
4

T

Vi j8 , s76d

dVi j9

da
= rfṼ9 − Ṽ9L̃Ṽ − ṽl̃Ṽ9 − V98l̃Ṽ9gi jC

−1/2

− Vi j93 dS

da
+

df

da

dR

da

0 0
4C−1, s77d

dVi j-

da
= rfV- − Ṽ9L̃Ṽ8 − ṽl̃V- − V-l̃ṽ − V-l̃V-gi j .

s78d

These equations guarantee thatV8, V9, andV98are always
zero at the large limit ofN, because the initial zero values of
Vi j8 , Vi j9 , andVi j- are preserved. Consequently, we adoptv
andV as the new order parameters, which successfully ex-
pressH.

Next, we consider theHGH term in Eq.(51) because a
small fluctuation ofE might become significant in this sec-
ond order of theH term. Specifically, we evaluate the square
of the fluctuation termE (to be exact,v andV also fluctu-
ate, but their fluctuations do not become significant because
these matrices are sufficiently small compared withN). In a
similar way as above, we let

fE2gi j = fU,VgFYi j Yi j8

Yi j9 Yi j-
GfU,VgT, s79d

where

FYi j Yi j8

Yi j9 Yi j-
G ; o

k=1

K FVik8 Vkj9 Vik8 Vkj-

Vik-Vkj9 Vik9 CVkj8 + Vik-Vkj-
G .

s80d

Then, an infinitesimal change ofE2 is

dfE2gi j = ffE + dEg2 − E2gi j

= o
k=1

K

WFfVik8 + dVik8 gfVkj9 + dVkj9 g fVik8 + dVik8 gfVkj- + dVkj-g
fVik- + dVik-gfVkj9 + dVkj9 g fVik9 + dVik9 gfC + dCgfVkj8 + dVkj8 g + fVik- + dVik-gfVkj- + dVkj-g

GWT

− o
k=1

K

fU,VgFVik8 Vkj9 Vik8 Vkj-

Vik-Vkj9 Vik9 CVkj8 + Vik-Vkj-
GfU,VgT. s81d

Substituting Eqs.(70)–(73) for dV8, dV9, and dV98, and
erasing small terms, we obtain an appropriate infinitesimal
change ofYi j , Yi j8 , Yi j9 , and Yi j-. Briefly, the point is that
fdVik8 gdVkj9 is not negligible but

VikFdf 0

0 0
GVkj,

because
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UTfdVgfdVgTU = Fdf 0

0 0
G

(see Appendix B). Actually, we obtain

dYi j = rC−1/2f2Ṽ8Ṽ9 − ṼL̃Ṽ8Ṽ9 − Ṽ8Ṽ9L̃Ṽ

− Ṽ8fl̃ṽ + ṽl̃gṼ9gi jC
−1/2da

+ o
k=1

K HGik8 Vkj9 − C−1fdC − dOgVik8 Vkj9 + Vik8 Gkj9

− Vik8 Vkj9 fdC − dOgTC−1 + VikFdf 0

0 0
GVkjJ .

s82d

We notice that each element ofYi j is initially zero, and be-
comesOs1d, because

VikFdf 0

0 0
GVkj

is Os1d, whereas the other termsYi j8 , Yi j9 , andYi j-are consid-
ered to be always zero at the large limit ofN.

We then let the following positive definite and symmetric
matrix

Y = V8V9 P RKhK+Mj3KhK+Mj s83d

be another new order parameter, whereY=fYi jgi,j=1,. . .,K. In
short, we can write

Ei j → 0, s84d

fE2gi j − UYi jU
T → 0 s85d

or, equivalently,

vi j I + UVi jU
T → H i j , s86d

o
k=1

K

fvikI + UVikU
TgfvkjI + UVkjU

Tg + UYi jU
T → fH2gi j

s87d

at the large limit ofN.
This Y is useful for estimating the matricesV8 andV9,

which are required for both theṼ8fl̃ṽ+ṽl̃gṼ9 term in Eq.

(82) and theṼ8l̃Ṽ9 term in Eq.(75). Intrinsically, an exact
restoration ofV8 andV9 usingY is impossible, because the
number of elements ofV8 andV9 is OsNd, while that ofY
is Os1d. Hence, we substitute one of the probable candidates
of Vi j8 andVi j9 for the trueV8 andV9; i.e., we use

Vi j8 = V ji9T =
1
În

hfÎYgi j , . . . ,fÎYgi jj, s88d

where n;sN−K−Md /K+M was assumed to be a natural
number. Equation(84) certainly satisfies the necessary con-
dition given by Eq.(83). Substituting Eq.(88) for Eq. (82),
we obtain

dYi j = rhC−1/2f2Ỹ − ṼL̃Ỹ − ỸL̃Ṽgi jC
−1/2

− †
ÎYfl̃ṽ + ṽl̃gÎY‡i jjda − C−1fdC − dOgYi j

− Yi jfdC − dOgTC−1 + o
k=1

K

VikFdf 0

0 0
GVkj, s89d

where Ỹ;fỸi j ;C1/2Yi jC
1/2gi,j=1,. . .,K. In a similar manner,

we can substitute Eq.(88) for Eq. (75).
Finally, we obtain the new order parameter dynamics

through Eqs.(74), (75), and(89) as

dvi j

da
= rfv − vlvgi j , s90d

dVi j

da
= rhC−1/2fṼ − ṼL̃Ṽ − ṽ + ṽl̃ṽgi jC

−1/2

− fÎYL̃ÎYgi jj − C−13 dS

da
+

df

da

dR

da

0 0
4

T

Vi j

− Vi j3 dS

da
+

df

da

dR

da

0 0
4C−1, s91d

dYi j

da
= rhC−1/2f2Ỹ − ṼL̃Ỹ − ỸL̃Ṽgi jC

−1/2

− †
ÎYfl̃ṽ + ṽl̃gÎY‡i jj − C−13 dS

da
+

df

da

dR

da

0 0
4

T

Yi j

− Yi j3 dS

da
+

df

da

dR

da

0 0
4C−1 + o

k=1

K

Vik3df

da
0

0 0
4Vkj.

s92d

Intuitively, in Eqs. (90)–(92), the terms includingr corre-
spond to the dynamics ofH, whereas the terms including

3 dS

da
+

df

da

dR

da

0 0
4

keep the component ofH constant which is still expressible
by V or Y under the movement ofU. The term including

3df

da
0

0 0
4

means the component ofH is no longer expressible byV
under the escape movement ofU into the null space ofU.

The dynamics of the usual order parameters for ANGD
given by Eq.(47) can be rewritten using the new order pa-
rameters in a manner similar to that for NGD:
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dRij

da
= − ho

k=1

K Hvikkdkxjlz + kdkz
TlzVik

TFR

T
G

j
J ,

dSij

da
= − ho

k=1

K Hvikkdkxjlz + kdkz
TlzVik

TFQ

RTG
j
J ,

dfi j

da
= h2 o

k,l=1

K

vikkdkdllzvl j ,

dQij

da
=

dSij

da
+

dSji

da
+

dfi j

da
, s93d

where the subscriptf g j denotes thejth column. Note that
these usual order parameter dynamics are not affected by the
small fluctuation,E (see Appendix C). Equations(90)–(93)
are the order parameter dynamics expressed by the order
parameters themselves.

IV. NUMERICAL RESULTS

We numerically validated the theoretical results through
simulation, and evaluated the performance of the simplified
version of ANGD. The numerical results obtained using the
theory were comparable with those of the simulation with

respect to not only the learning curves but also the learning
failures. We also found that the performance of ANGD is
roughly comparable with that of NGD whenh /r is small.
Detailed conditions of these numerical results are given in
Appendix D.

First, we validated the theoretical motion equations by
using a simulation withN set to 500. The learning curves
(time evolution of the generalization error) of the theory are
shown in Fig. 2(c), while those of the simulation are shown
in Fig. 3(c). There were no significant differences between
the theoretical and the simulation results. With respect to the
two j rule, simulation results showed that those adopting this
rule were generally comparable with those not adopting this
rule, although they were slightly slower whenr is large.(We
show only the simulation results for adoption of this rule.)

We also evaluated the learning failure of the simplified
version of ANGD. As this version of ANGD defined by Eq.
(12) assumesr!1, a larger could cause problems. The
simulation results showed divergence of the network param-
eters and the system failed to learn the teacher outputs with
large r [solid line in Fig. 4(a)]. Figure 4(b) shows the bor-
derline between this learning failure and the success areas
with respect to theh andr conditions. Roughly, the failure
area corresponded torù0.05. Our numerical solution of the
theory successfully reproduced these learning failures in the
simulation, which are shown as the dotted lines in Figs. 4(a)
and 4(b). (We considered a learning failure to have occurred

FIG. 2. Numerical results of the theory. Time evolution of the generalization error ath=0.01,r=0.01, andN=500.(a) SGD, (b) NGD,
and (c) ANGD. NGD and ANGD are not greatly affected by the angle of the teacher weight vectorsskd, whereas SGD is.

FIG. 3. Simulation results. Time evolution of the generalization error ath=0.01,r=0.01, andN=500.(a) SGD,(b) NGD, and(c) ANGD.
The results obtained using the theory in Fig. 2 are comparable to the simulation results.
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with the theory when the correlation matrix of the weight
vectors,C, violated its positive definiteness.)

Next, we compared the learning curves between SGD,
NGD, and ANGD under various teacher weight vector cor-
relations.(The angle between teacher weight vectors is de-
noted ask.) Figure 2 shows the learning curves for(a) SGD,
(b) NGD, and(c) ANGD. We can see that ANGD had almost
the same performance as NGD and does not have any severe
plateaus. Moreover, ANGD was not greatly affected by the
teacher correlations, although SGD was.

Finally, we reveal the key condition affecting the learning
plateau in ANGD. NGD is known to have a plateau when the
learning rateh is too large[6]. We found that a plateau
occurs in ANGD not only in the largeh case, but also in the
small r case. Figure 5(a) shows the time cost of learning
under a wide range ofh andr. This contour graph suggests
that a plateau occurs whenh /r is large. Our simulation study
also supported this finding[Fig. 5(b)]. This phenomenon

may be interpreted to mean thatĜ−1 cannot follow a change
in the trueG−1 if h is relatively large compared tor.

V. CONCLUSION

We have developed a order parameter expression for a
simplified version of adaptive natural gradient learning in
which the learning dynamics can be expressed using only a
few order parameters. We numerically validated this theory
through simulation and confirmed that this theory success-
fully reproduces not only the learning curve, but also the
learning failure. We found that the ANGD performance is
generally comparable with that of NGD. We also found
that we can avoid the plateau in ANGD by making the up-
date rate of the network parameterh low enough compared
to the update rate of the inverse of the Fisher information
matrix r.
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APPENDIX A: CONVERGENCE OF MATRICES

In this paper, we sometimes refer to matrix or vector
“convergence” in the sense of each element, although this
word is usually used in the sense that the norm of the differ-
ence between the series of concern and a given matrix or
vector converges to zero. As we are dealing with the large
limit of the input dimensionN, the average ofN RN3N ma-
trices orN RN vectors often converges in the sense of each
element, but does not in the sense of the norm. We can see
one example of this phenomenon inJi dynamics in SGD;
although each element of its fluctuation is small, the norm of
this fluctuation is not zero butDfii [see Eq.(21) and Fig. 1].
In the following, we discuss the convergence of matrixF
used in Eq.(44).

Let us estimate the order ofF, specifically, the following
matrix:

1

N
o
m=1

N

f= f smdgf= f smdgT, sA1d

where=f smd=fg8sJi
Tjsmddjsmdgi=1,. . .,KPRNK is a random vec-

tor dependent on the random inputj,Ns0,I d. Here, the
superscript ofxsyd denotes not the time but simple identifica-
tion. The diagonal element of each block of this matrix, e.g.,
the sk,kd element of thesi , jd block, is

1

N
o
m=1

N

g8sJi
Tjsmddg8sJ j

Tjsmddhjk
smdj2. sA2d

If we dropg8sJi
Tjsmddg8sJ j

Tjsmdd, because it isOs1d, we notice
that the probability distribution of this element is given by an
N-freedomx-square distribution, i.e., its moment-generating
function is defined as

wstd = F1 − 2H 1

N
tJG−N/2

. sA3d

Consequently, we get the variance of this element as

FIG. 4. Learning failure of the simplified version of ANGD with
N=100. (a) Time evolution of the generalization error under the
conditions ofh=0.02 andr=0.1. (b) Contour graph under various
values ofh andr. The probability of learning failure is shown with
respect to the simulation results because the simulation was a sto-
chastic process. Numerical results of the theory well predicted the
learning failure in the simulation.

FIG. 5. Contour graphs of the time cost needed foreg to reach
eg,10−7 for various values ofh andr in ANGD. Here,k was set
to p /8. (a) Results obtained using the theory and(b) simulation
results. Timea was normalized as 100ha. The plateau length was
strongly dependent onh /r.
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U ]2

] t2
ln wstdU

t=0
=

2

N
. sA4d

The nondiagonal element of each block, e.g., thesk, ld ele-
ment of thesi , jd block, is

1

N
o
m=1

N

g8sJi
Tjsmddg8sJ j

Tjsmddjk
smdjl

smd. sA5d

Similarly, we notice that this distribution is given by an av-
erage ofN modified Bessel functions of the second kind.
Then, we get the moment-generating function

wstd = F1 −H 1

N
tJ2G−N/2

sA6d

and the variance as 1/N.
Therefore, each element of the matrix converges as

Os1/ÎNd, but the Frobenius norm diverges asOsÎNd because
this matrix hasNK3NK elements. In other words,oF →G
holds with respect to each element, but does not converge
with respect to the Frobenius norm.

APPENDIX B: ORDERS OF v ,V ,V8 ,V9, AND V-

We prove that, with respect toN, the orders of each ele-
ment of the matricesv ,V ,V8 ,V9, and V- are at most
Os1d ,Os1d ,Os1/ÎNd ,Os1/ÎNd, and Os1/Nd. First, we
evaluate the order of theUTdV ,VTdU, and VTdV terms,
which are used in Eqs.(70)–(73). We especially pay attention
to the fact that some of the inner products between infinitesi-
mal changes ofN-dimensional vectors are notOsd2d but
Osdd, e.g.,

fdUgTdU = df8 ; Fdf 0

0 0
G P RhK+Mj3hK+Mj.

We then consider Eqs.(69)–(73).
First of all, we explicitly determineV, the orthonormal

bases of the null space of the weight vectors, usingU and
dU. We find that some of the orthonormal bases of theV
subspace can be expressed usingU anddU as

F ; F8fF8TF8g−1/2 P RN3hK+Mj, sB1d

where

F8 ; fI − UC−1UTgdU P RN3hK+Mj. sB2d

Here,F8 is the orthogonal component of thedU to U sub-
space, whileF is the normalizedF8; i.e., FTF= I (see Fig.
6). (We assume the rank ofdU is K+M for simplicity, al-
though it is actuallyK.) Note thatUC−1UT is a projection
matrix to theU subspace. In a similar manner, we also find
that some of the orthonormal bases of theV+dV subspace
can be expressed usingU anddU as

C ; C8fC8TC8g−1/2 P RN3hK+Mj, sB3d

where

C8 ; − †I − fU + dUgfC + dCg−1fU + dUgT
‡U P RN3hK+Mj.

sB4d

Here, C8 is the orthogonal component ofU to the U+dU
subspace, whileC is the normalizedC8, i.e., CTC= I .
Thus, we can think that some of the orthonormal bases of the
V subspace correspond toF, andF moves toC asV moves
to V+dV. However, the column vectors ofF andC do not
necessarily coincide with some of the column vectors ofV
andV+dV, respectively, i.e., some rotation or mirror image
conversion might be required. Hence, we introduce an appro-
priate orthonormal matrixM PRhN−K−Mj3hN−K−Mj, and explic-
itly expressV ,V+dV, anddV as

V = fF,V8gM , sB5d

V + dV = fC,V8gM , sB6d

dV = fC − F,0gM , sB7d

whereV8 is one of the set of orthonormal bases of the null
space ofU andU+dU. Note that each of

fUC−1/2,Vg,

fUC−1/2,F,V8g,

†fU + dUgfC + dCg−1/2,V + dV‡,

†fU + dUgfC + dCg−1/2,C,V8‡, sB8d

consists of the orthonormal bases of the whole space. If we
decomposeM as

FM0

M1
G ,

we can rewrite Eqs.(B5)–(B7) as

V = fF,V8gM = FM0 + V8M1, sB9d

V + dV = fC,V8gM = CM0 + V8M1, sB10d

FIG. 6. Intuitive schema of the null space ofU andU+dU.
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dV = fC − F,0gM = fC − FgM0. sB11d

V8 andM1 contain some arbitrariness, althoughV8M1 is well
defined. However, we can avoid using them as shown below.

We can then calculate theVTdU ,fdVgTU, and fdVgTV
terms. We find that the norms of the column vectors of
VTdU,

fdUgTVVTdU = fdUgTfF,V8gMM TfF,V8gTdU = df8

sB12d

areOs1d with respect toN. Note thatMM T= I by its defini-
tion. As the orthonormal matrixM does not change a matrix
norm, each element of theN-dimensional vectorsVTdU is
Os1/ÎNd. In a similar manner, we can calculate the norm of
fdVgTU:

UTfdVgfdVgTU = UTfC − F,0gMM TfC − F,0gTU = df8.

sB13d

This also means that each element offdVgTU is Os1/ÎNd.
These results are used after Eq.(73). Equation(B13) is also
used to derive Eq.(82). We also find that each element of
fdVgTV is Os1/N2d, because

VTfdVg = MTfF,V8gTfC − F,0gM

= − MTFA 0

0 0
GM = − M0

TAM0, sB14d

where each element ofA;fdf8g−1/2[fdf8gC−1fdC−dOg
+fdOgC−1dOT]fdf8g−1/2 is Os1d, and these elements are
scattered toN3N elements byM.

Next, we consider the orders of Eqs.(69)–(73):

dvi j = rfv − vlvgi jda, sB15d

dVi j = rC−1/2fṼ − ṼL̃Ṽ − ṽ + ṽl̃ṽ − Ṽ8l̃Ṽ9gi jC
−1/2da

− C−1fdC − dOgVi j − Vi jfdC − dOgTC−1

+ C−1fdUgTVVi j9 + Vi j9VTfdUgC−1, sB16d

dVi j8 = rC−1/2fṼ8 − ṼL̃Ṽ8 − Ṽ8l̃ṽ − Ṽ8l̃V-gi jda

− C−1fdC − dOgVi j8 + Vi j8VTfdVg + C−1fdUgTVVi j-

+ Vi jU
TfdVg, sB17d

dVi j9 = rfṼ9 − Ṽ9L̃Ṽ − ṽl̃Ṽ9 − V-l̃Ṽ9gi jC
−1/2da

+ fdVgTVVi j9 − Vi j9 fdC − dOgTC−1 + fdVgTUVi j

+ Vi j-VTfdUgC−1, sB18d

dVi j- = rfV- − Ṽ9L̃Ṽ8 − ṽl̃V- − V-l̃ṽ − V-l̃V-gi jda

+ fdVgTVVi j- + Vi j-VTfdVg + fdVgTUVi j8

+ Vi j9UTfdVg. sB19d

Each element of the matricesC,dC, anddO is considered to
beOs1d with respect toN. l andL are also considered to be

Os1d. Matrix normalization denoted with tilde(e.g., Ṽ) is
considered not to change the order. Matrix size extension
(e.g., ṽ) is also considered not to change the order. As the
initial value of H is defined as a unit matrix, we can letv
= I ,V=0,V8=0,V9=0, andV-=0 as initial values. Then,
we notice the following.(1) v is Os1d from the initial state.
(2) Then,V soon becomesOs1d, becausedVi j has aOs1d
term −ṽ+ṽl̃ṽ. (3) Then, V8 and V9 soon become
Os1/ÎNd, becausedVi j8 and dVi j9 have anOs1/ÎNd term
Vi jU

TfdVg andfdVgTUVi j , respectively.(4) Then,V- soon
becomesOs1/ÎNd, becausedVi j- has an Os1/Nd term
fdVgTUVi j8 +Vi j9UTfdVg. (5) There is no contradiction if we
assume these orders are preserved.

APPENDIX C: EFFECT OF E

We find that the fluctuation termE defined by Eq.(50) as

Ei j ; fU,VgF 0 Vi j8

Vi j9 Vi j-
GfU,VgT sC1d

does not affect the usual order parameter dynamics under the
assumption that each element ofVi j8 , Vi j8 , and Vi j- are
Os1/Nd, Os1/ÎNd, andOs1/ÎNd, respectively(see Appendix
B).

Here,E is negligible with respect to the dynamics ofR
andS in Eq. (47). This is because all the terms includingE
are 0 as shown:

kdkj
TEik

TB jlj = kdkj
TVVik9

TUTB jlj

= kěszdg8sxkdlzkvTlvVik9
TUTB j = 0,

kdkj
TEik

TJ jlj = kdkj
TVVik9

TUTJ jlj

= kěszdg8sxkdlzkvTlvV
9ik
T UTJ j = 0, sC2d

where v;VTj,Ns0,I d is independent of z;UTj
=fx1, . . . ,xK ,y1, . . . ,yMgT, andkvlv=0.

E is also negligible with respect to the dynamics off. All
the terms includingE can be expressed as

1

N
Kdkdlj

TfU,VgF A A8

A9 A-
GfU,VgTjL

j

, sC3d

where

F A A8

A9 A-
G = H ikH jl − fvik + UVikU

Tgfv jl + UV jlU
Tg.

sC4d

Then, we notice thatkdkdlj
TUAUjlj is Os1d, while

kdkdlj
TUA8Vjlj and kdkdlj

TVA9Ujlj are 0. Moreover,
kdkdlj

TVA-Vjlj is at mostOs1d because each element of
A-,
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A- = vikV jl- + v jlVik- + Vik9 CV jl8 + Vik-CVik-, sC5d

is Os1/Nd. As all the terms in Eq.(C3) are scaled by 1/N, we
can ignore them. Therefore, we can completely ignore the
effect of E in the usual order parameter dynamics.

APPENDIX D: DETAILED CONDITIONS
FOR NUMERICAL RESULTS

For numerical results, we considered a realizable case, in
which the numbers of the hidden units for both the teacher
and student networks were set to 2sK=M =2d. With respect
to the order parameter dynamics, the initial conditions of the
usual order parameters were set as follows. The square
lengths of all teacher weight vectorsTii were set to 1, while
the angle between the teacher weight vectors,k
;arccosT1,2/ÎT1,1T2,2, was set to a moderately correlated
value, p /8, unless otherwise stated. The initial conditions

with respect to the student weight vectors were determined
according to the corresponding expected values of random
choiceJ,Ns0,s1/NdI d, i.e.,Qii =1,Qij =0, andRii =0. Only
Rijsi Þ jd, the inner products between the student weight vec-
tors and noncorresponding teacher vectors, were set to a
small negative valueRii −r ij to break the permutation sym-
metry a little, where we adopted a 1 standard deviation rule,
i.e.,

r ij ; ÎVarJsRii − Rijd =ÎTii + Tjj − 2Tij

N
, sD1d

where VarJsxd denotes the variance ofx with respect toJ.
Then, we solved the order parameter equations using the
Runge-Kutta method with time intervalDa=0.1. With re-
spect to our simulation, the initial states ofB and J were
determined to satisfy the conditions of the order parameters
above.
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