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Dynamics of the adaptive natural gradient descent method for soft committee machines
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Adaptive natural gradient descg®NGD) method realizes natural gradient desa@®D) without needing
to know the input distribution of learning data and reduces the calculation cost from a cubic order to a square
order. However, no performance analysis of ANGD has been done. We have developed a statistical-mechanical
theory of the simplified version of ANGD dynamics for soft committee machines in on-line learning; this
method provides deterministic learning dynamics expressed through a few order parameters, even though
ANGD intrinsically holds a large approximated Fisher information matrix. Numerical results obtained using
this theory were consistent with those of a simulation, with respect not only to the learning curve but also to
the learning failure. Utilizing this method, we numerically evaluated ANGD efficiency and found that ANGD
generally performs as well as NGD. We also revealed the key condition affecting the learning plateau in
ANGD.
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I. INTRODUCTION unaffected by the correlation between the teacher weight

. vectors[3]. From a general view, one of the greatest advan-
Feed-forward multilayer perceptrons are known to havgages of NGD could be its independence of the parametriza-

difficulty determining their parameters using a set of trainingijon of a given network model. Another advantage may be
data. This is because of the nonlinearity of their activationa; the premultiplier of the gradient of the error — the in-

functions, which prevents the use of analytical estimation,erse of the Fisher information matrix — is not dependent on
methods; e.g., maximum likelihood estimation. An altera-jgarming data or the error function and is necessarily positive
tive approach is to use the stochastic gradient descent, whi§kfinite. There are similar methods that use the inverse of the
introduces an error function for a given learning sample in &4essjan matrix as the premultiplier. However, these methods
supervised learning framework and adjusts the network pamay he unstable, because their premultiplier intrinsically de-

rameters step by step to reduce the error. _ pends on learning data and is not necessarily positive definite
Steepest gradient descef8GD) method, equivalent to

back-propagation, is a simple and useful gradient descent Adaptive natural gradient desce#®NGD) [8,9] is an at-
method, but it suffers from a learning plateau, which is ayactive form of NGD with respect to both the calculation
long Iear_nlng period with poor error reductlon._ This learning cost and the input distribution of training data. ANGD re-
plateau is caused by the permutation symmeitey, an ex-  gyces the calculation cost from a cubic order of the number

change of two hidden units in the same layer has no effect 0§t network parameters to a square order, and does not need
the network outpytbecause it creates a saddle structure ing know the input distribution. Moreover, ANGD retains

the.ger?eralization error functic{ﬂ,?]. Moreover, thg pIateau. some of the advantages of NGD, e.g., its approximated in-
period is prolonged when the weight vectors of hidden unit§,erse of the Fisher information matrix is necessarily positive
in the teacher network are correlatgs]. definite. However, no previous research has quantified the

_In contrast, previous works have shown that natural grajearning performance of ANGD with respect to its practical
dient descenf{NGD) [4,5] has almost optimal learning per- applicability.

formance(Fisher efficiency. NGD does not have any pla-

! i ; ‘ In this paper, we evaluate the learning efficiency of a
teau if the learning rate is set low enoufj. NGD is also

simplified version of ANGD for soft committee machines.
(Soft committee machines consist of simplified two-layer
perceptron3. ANGD is intrinsically elaborated for on-line
*Present address: Department of Computational Intelligence angarning. On-line learningj7,10 facilitates analysis because
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Engineering, Tokyo Institute of Technology, Yokohama 226—8502js independent of each learning sample. We employed
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and Department of Otolaryngology, Head and Neck Surgeryeters and make the stochastic learning dynamics converge
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NGD, and ANGD, and an adaptive estimation of the inverse
of the Fisher information matrix for ANGD. We use a soft
committee machine witiM hidden units as a teacher net-
work and one withK hidden units as a student network:

M

fg(é) = kZ a(Bed), (1)
=1
K

f3(8) = kE 939, (2)
=1

where the superscripk denotes the transposB, € RN and
J, € RN are column vectors that represent Kile weight vec-
tors for N-dimensional input € RN, andg denotes the acti-
vation function. We define the probability density function
for each network for NGD and ANGD. The function for the
teacher network is defined with inpgtand output/ as

Pe(£.0) = p() oL - ts(8), ()

wherep(£) is the input distribution and is the Dirac delta
function. The probability density function for the student net-
work is defined with input§é and output{’ using normal
distribution MV(f;(£), 1):

By£L) = p(é),i—eXp[— M- fJ<§>}Z]. @
N2 2

The student distribution is modified incrementally by adjust-

ing its parameter vectar=[J],J7,..,J5]" € R*N to approxi-
mate the teacher distribution.
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G = [V, In ps(&,¢)11V5 In py(& D=V VT,
9

while G is an adaptively approximated matrix Gf obtained

by ANGD. The update rule o6 is given asG: =G+AG,
where

AG=E-G+[viveD, (10)

ZIo

while 0<p/N<1 is an update rate. ANGD does not use
the input distributionp(£), but shares each input sampje
with the update rule o8, and approximate& step by step.
Realistically, rather than EQq(10), ANGD adopts an
exactly equivalent rule using the Sherman-Morrison formula

G =G 1+AG™, where

P ) .
seie N o GVAVIE?

P P Ao |
1 N 1+N{[Vf]TG Ivi]-1

11

Equation(11) offers the great advantage that we can omit the
expensive matrix inversiofO({NK}®] and achieve lower

calculation cosD({NK}?). Here,G™* is always positive defi-
nite and symmetric if the initial value is positive definite and
symmetric. For an initial value, we choosdor simplicity.
ANGD is always applicable if SGD is applicable, because
VT is required even in the case of SGD, whereas NGD can-
not always be applied when the input distribution is un-

The error of student output from teacher output is definedknown.

as

o = S @, ©
where

(&) =1, ~fa(d). (6)

Whenp<1, Eq.(11) can be reduced to a simple form
AG!= ﬁ(é-l ~GYVVIGY. (12)

This approximation was introduced by Amai al. [8]. In
this paper, we investigate this simplified version of ANGD in
detail under the assumption of small We also elucidate
what happens when this assumption is violated.

The generalization error is also defined as the expected error:

€5(J) = (&3(d)¢, (7

where (x), denotes the expectation af with respect to a
random variabley.

Ill. THEORETICAL RESULTS

In this section, we show the order parameter expression of
the system dynamics in ANGD, where we use both the usual

The parameter update rule in gradient descent can be wrignd newly introduced order parameters. With respect to SGD

ten, in general, ag: =J+AJ, where
__7 __ 7.
A== MVg@=-T&EMYE (@

while M e RNK*NK - /N>0 is a scaled update rat¥, de-
notes the gradient, andf e RNK denotesV,f;(£). We can
implement SGD by settinyl =1 (unit matrix), NGD by set-
ting M=G™* [4], and ANGD by settingM=G™ [8,9]. G
denotes the Fisher information matrix of parameter vegtor
defined as

and NGD, the usual order parameters are sufficient to explain
the system state because the system has rotation invariance
under the assumption of Gaussian inpgt- N(0,1)], i.e.,

the system is equivalent to the one with rotated weight vec-
tors J;,B;. The usual order parameters can also describe the
Fisher information matrixG and G 1. We need new order
parameters for ANGD, though, to describe the approximated

inverse of the Fisher information matri@!. To make the
present paper self-contained, we first briefly summarize the
derivation of the usual order parameter equations of the soft
committee machines for SG,2] and NGD[5,6]. Then, we
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explain the order parameter expression for ANGD. 7
AJj=- Néig, (18)

A. Generalization error
The usual order parameters are the inner products amor’/{jhere
all weight vectors: 6=[8]1 . &=8520 (%), (19)
— — 1T
Q=[Qylij=1..ko Q=Y while g’ is the derivative ofy. Thus, the update rules of the
; order parameters can be written as
R=[Rjli-1,. kj=1,.m» Rj=JBj, .
; AR; :[AJi]TBj:‘NfsiyJ',
T=[Tjlij=1...m» T;j=BiBj. (13

Here,Q e R**¥ means the inner products matrix for the stu-  AQ, =[J; + AJ;T[J; + AJ;] - ITJ;=AS; + AS; +Ady,
dent weight vectors, whil® € R*M means the matrix con- . . . . . .

taining the inner products between the student and teacher (20)
weight vectorsQ andR are updated according to the updat- where
ing of J. Here, T e RM*M means the inner products among
the teacher weight vectors; this is fixed. The square length of AS; = [AI ]I = - Moy
each input and the inner products between the input and the ! = N
weight vectors are temporarily used to describe the micrody-
namics: ?x
B T Here and hereafter, we uS=[S;] ;=1 ke R"*¥ and ¢
X=[xiliz, 0 %=3ié, =[] j1... x € R for convenience.
Next, we introduce timer and specify that time I is
y=[yliz1, .m. YVi=Bl& (14  consumed by each update. At the large limitNyfthe dy-

namics of the order parameters become continuous and de-
terministic. For example, the value & over an infinitesi-

mal time intervalde after current timea is not a random
variable, although eachR;; is a random variable:

P
Here, x € R stochastically converges d(y—N) at the large
limit of N. Also, x € RX andy € RM are random vectors de-
pendent on inpug. The distribution ofz=[x",y"]" e RX*M

is determined using the order parameters\V(0,C), where Nda—1
Ri(ja+da) = Ri(ja) +lim > ARi(jMMIN):Ri(ja) — K dyj) Hda.
C= |:(?T R:| c H{K+M}><{K+M}. (15) N—= =0
R' T (22
We can then substitute the order parameters and theSgherefore, the time derivation &, is
random variables for alN-dimensional vector8;,J;, andé.
The number of order parameters is sufficiently small because d_ﬁﬂ =~ 8y 23)
it does not depend oN, and this facilitates system analysis. da KEYj)z-

For example, the generalization error can be expressed as

o ) This expectation with respect tocan be solved analytically
+

1 [1]. The dynamics 06);; can be determined similarly, and we
o0=3 [ama| Tegw |, (6 g :
k=1
wherecy is 1 if k=<K or -1 if k> K. Here and hereafter, we dQy _ds + a5 + dd (24)

assumeg(x) =erf(x/v2), where er(x)52/\“"T-rf?,dte‘t2 is the de  da  da  da’

conventional error function. The generalization error canyhere
then be rewritten as an analytical functifi,

das.
o . == o
€(C) == > cicjarcsin- J . @an @
Tij=1 V{G;i + IH{C;; + 1}
de
E;l = 7X85),. (25

B. Steepest gradient descent

The dynamics of the order parameters for SGD can be The order parameter dynamics suggest that, at the large
expressed using the order parameters themsglygs From  limit of N, J; necessarily moves out of the current direct sum
Eq. (8), the update rule for parametéris subspace made by all the weight vectdys..,Jx,B1,..,By,
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Fisher information matrixG and its inverseG™, by using

[dS11l

parameters.

Generally, for anyG;; e R“*¥, the(i, j) block of G can be
expressed with both the student weight vectod$
=[J,,...,Jc] e RNk and all the orthonormal bases of the
null space of the student weight vectatss RNINK! which
satisfiesvVV=1 andJ'V=0, as

[dRq1|
[EA]
.. . . A” AI,j T
FIG. 1. Intuitive schema of the learning dynamics at the large Gij =\l +[J3',V] [J',V]", (26)
1) 1) A// A///
limit of N. In the case oK=M=1, J; mainly moves in the current ij ij

subspace made hl; andB; according to the gradient of the error,

but necessarily moves out of this subspace into the null space, Qyhere \ij € R, Aji e RKXK, Ai,' e RKXIN-K} Ai'{ e RIN-KIxK
the complementary subspace,JafandB;, because the small fluc-  5nqA” R{N—K}x!N—K} (to be exact); is verbosg We can
tuation ofJ; in each dimension is summed up resulting in the non-ya rlewrite Eq(26) as !

zero terme, ; in Eq. (25).

although it mainly moves toward the subspace made by Gij =\ +J’AijJ’T+ Eij. (27
B;,..,By (Fig. 1). The direction of this orthogonal move-

ment to that subspace is always chosen randomly, while the

time derivative of the square distance of this movement is 0 Al

represented ad¢;/da in Eq. (24). This orthogonal move- Ej= [J’,V][A,, A,'f,}[J’,V]T, (29)
ment also appears in NGD and ANGD as thg;/da tgrm i

included in the dynamics o®;, and, moreover, in th&™?

dynamics for ANGD. whereE;; e RNN,
] We next proveE;=0; in other words,\; and A;; are
C. Natural gradient descent sufficient parameters to expre@s By multiplying the iden-

The dynamics for NGD can also be expressed through thtity matrix [J",V][J’,V][J’,V]]™{J",V]", we can rewrite
order parameters. In this section, we first determine thé&s;; as

Gy =([VHIIVHID;
=[3" VI VI3 VI VTV RV D37, VI VI VI VT

oot ol [T xT Qt o]
=V IKg(xi)g(xj)[vxT va]>g[0 I}[J VT

oo Jorol/ . IxT o Qtol

Qg (4)g’ ()xxT,Q 0 ] .
=[J'V J'V
VI 0 @ g o |7V
=(g' ()9 (}))VVT+ I Qg (x)g' (x)xx),QI"T
=(g' ()9 (}))xl +I'TQ7HG ()T’ (X)xx") Q™ = (g’ (x)g' (})Q 13’7, (29
[
where Vfi=g'(x)& while v=VTé~AN(0,I). We used Ajj = QHg ()9 ()xxT, Q71— Q7
(9" ()9’ (4)x0T)=(g' 05)g' 0))X)x(0 "), =0 and (vT)=I. Q+1 Q; |
Thus, we can prov&; =0 by letting :—)\ij[el,ej]{ o Q .\ J [e.g]", (3D
Qi+l Q; |

2
Nij = (9" (X)9' (X))« = 7—7‘ , (300 where|| denotes a determinant, whigee R is a unit vector

Qj Q;+1
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whoseith element is 1\;; and Aj; are expressed with cer- here on, for simplicity we writeH instead ofG™2) in the

tainty by Q.
Next, we determin&™! using a similar style to Eq27):

[G_l]ij = GIII +J,®ijJ,T, (32)

where 6; € R and @;; € R**¥ correspond to\; and A;;, re-

simplified version of ANGD. Unlike NGD, there are three
types of difficulties in ANGD.

(1) First is the dependence betwednand H, because
ANGD has two dynamics of andH and they each share
input §&. We introduce an approximatigitwo & rule) to ne-

spectively. If we temporarily adopt normalized expressionggate this dependence.

of Aj; and®;;, defined as
Kij = Qlleile/2+ )\”I y (33)
0, = Q20,,Q"2+ g, (34)

matrix multiplication will be simplified, e.qg.,
GijGu = ([l - UQMUT]+ UQ VA, QU7
X [Nl =UQUT] + UQ 2R, Q U]
= Nl =~ UQ U] + UQ VA A, QV2UT.
(395
Utilizing this normalization, we can easily obtain
6=\ O=A"L (36)
where N=[\jij-=1, x and 0=[6;]j-1, x are RKX~K
symmetric matrices, while  A=[Ajlij=1,.. x, A

=[Ajjlij=1.. .k O=[0lij=1, x and@E[Qij]i,jzl,...K are

2 2 . .
RK™>K" symmetric matrices.

Finally, we obtain the order parameter dynamics for

NGD. In NGD, the rule for updating is given by

K
n _
AJ == 2 G E. (37)
k=1

Hence, we obtain the time derivatives of the order param-

eters in a manner similar to that for SGD:

dR, <
g = 2 (0480 (B OIR)
ds; «
EYL =- 7]2 [0ik<5kxj>2+ <5kXT>Z®i-II—(QJ']’

k=1
K

dds
_de)l =72 O 520
@ kl=1

@l:d_sj.+djl+%’ (38)
de da da da

whereR; denotes thgth column ofR, and so or{6].

D. Dynamics of G for ANGD

(2) Second is the higher-order self-correlations téf
which originate from the update rule éf itself. We negate
these infinite correlations by exploiting tipe<1 assumption
of the simplified ANGD, becauseth-order self-correlation is
scaled byO(p").

(3) Third is the high complexity oH; G and G™* are
sufficiently characterized by the subspace of the student
weight vectors, wheread is not. This complexity will be
managed in the following section.

First, we introduce twg rule. From Eqgs(8) and(11), the
values ofJ andH for an infinitesimal time periodla after
current timea are

Nda-1
Jlerda) — g(e) 4 E AJD
=0
Nda-1
o 7] T) 7, T,
= )_N 20 &aEMHO VD, (39)
e
Nda-1 Nda—1
HE = H@ 4 3 AHO=H@ + X p'(HO -HO
©n=0 u=0
X[VHZIVHZTH®)
Nda—1
={L4pNH = X {14 pr Nt HO
=0
X[VEDIVITH®, (40)

where  and p are O(1) with respect toN, p’=p/N/(1
—p/N), and = a+u/N, while V{() denotesV ,f;(£9)];- .
These two equations show that bdttandH include a com-
mon random vectoinE:;. Therefore,J andH become de-

pendent on each other. To negate this dependence, we intro-
duce an update rule—we draw tvoindependently, one for
theJ update and the other for thé update in each learning
step(two & rule)—so that this dependence disappears. Under
this two & rule, we can fixJ duringda, and reduce Eq40)

to

Nda-1
H(a+da') :{1 +p/}NdaH(a) _ 2 {1 +p/}Nda—l—MH(T)F(T)H(T)'
©u=0
(41)
whereF = p'[V7][VF7]T. This two £ rule will be vali-
dated in Sec. IV.
Next, we negate the higher-order self-correlationdHof

In this section, we derive the dynamics of the approxi-\we notice that this Eq41) is still difficult to solve, because

mated inverse of the Fisher information mat@X?* (from

it includes highly self-correlated terms with respect to the old
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random matrixe (™) (a<7 < 7). For example, the most cor- H, althoughG andG™* are sufficiently expressed by only the

related term is current student weight vectors.
N voIN (2) Second is the escape from the subspace made by all
H@F @R @R EINY@p@g@p@2N 0 42)  the weight vectors. The direction of this movement is ran-

dom, although its speed is deterministic as specified by the
d¢ term. The order parameter expressions of SGD and NGD
do not suffer from this randomness because they discard it by
exploiting the rotation invariance of the system. In ANGD,
however, this randomness upsets the order parameter expres-

However, we can ignore these terms includiniy order self-
correlation(n=2), because they are at mas(p") and small
enough under the assumption pt1 for the simplified
ANGD. Therefore, we sum up only th®(p® and O(pl)

terms: sion of H; it produces a hysteresis componenttbfor the
Nda-1 residual fluctuating ternig as introduced beloywwhenH is
Herda) = {7 4 prNdap(@) 4 N f] 4 prNda-1 expressed through order parameters. This fluctuation term is
u=0 negligible at the large limit oN, but its square is not. Here,
X [{1+p FH@IFO[{L +p H@]. (43 we realistically cqnsider th?l dynamics by taking the sec-
o ond powers of this fluctuation term into account, and obtain
At the large limit of N, Eq. (43) becomes an effective order parameter expressiortofThis theoreti-
H(@r+da) = grdap (@ 4 (] — gl (@G H (@], (44) g:l:tirgr?ult will be numerically validated in the following
where we us&F — G (see Appendix A for further discus- First, we express$i in a similar manner td in Eq. (27)
sion about the convergence Bf. Then, we obtain the dy- as
namics ofH:
Q5 Qj T
dH ) H(a+da) _ H(a) HI] = wijl + [U,V] Q" [U,V] (48)
— = lim ————=p[H -HGH]. (45) i
da  da—0 da
We also obtain the usual order parameter dynamics. As =yl + UQ”-UT+ Eij. (49)
the update equation of eadhfor ANGD is
K E;=[U v]l 0 @ ][u il (50)
A3,=- 13 oM, (46) ” Q) o
k=1
_ and proveE;; is negligible. Note that we use not only the
we can easily get student weight vectors, but also the teacher weight vectors;
K i.e., we useU=[Jy,... Jx,B1, ..., Byl e RNKM} jnstead
dR; == 9> (8ETHTB)) of J’=[J4,...,Jk]. This is because the student vectors move
da e k=i toward the corresponding teacher vectors &hdholds the

component made from the old student vectors. Héfe,
ds K e RNXIN-K-M} 5 redefined as the orthonormal bases of the
=l -_ ,72 <5k§THI(JJ-)§, null space ofU rather thand’, which satisfiesv™V=I and
da k=1 UTV=0. Here,w; € R andQ;; e RIKMPX{KM} gre the candi-
dates for the new order parameters. Alsd;

do 5 K  RIKEMIX{N-K-M} Q  RINCK-MIX{KeM} g Q)
d—'L = % > (SAEHIH O, e RINK-MPXN-K-M} are large matrices. Al =[Hj]ij=1.
@ kl=1 is a symmetric  matrix, =[x Q
E[Qij]i‘j:L,K, andﬂ"’z[ﬂi’]f’]i’j:le are also symmet-
dQj _ds;  dS  ddy (477 fic matrices, while Q' =[Q]j=,. x and Q

dae da da da’ =[Qj]i j=1,.. x are symmetric with respect to each other.
Next, we find appropriate dynamics of

w, Q, Q, Q7 andQ” that satisfy the dynamics &f
iven by Eq.(45). For convenience, we consider an infini-

fedimal change ofi;; from Eq. (45),

These order parameter dynamics still inclidielimensional
vectors andN X N matrices, but we obtain the order param-
eter dynamics expressed by the order parameters themsel
in the following section.

E. Ord t tation for H=G"1 _ . .
raer parameter representation for By substituting Eq(48) for H, we easily obtain the decom-

In this section, we extract the new order parameters fronposed form ofdH;; as
H. To characterized, we should consider the history df
which includes two types of movements. _ i L T
(1) Firstis the approach to the corresponding teacher vec- dHj; = ;! +[U,V][F_,{ r” (U VT, (52
tors. To deal with this movement, we use not only the student o
weight vectors, but also the teacher weight vectors to expresghere

056120-6
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Yii = p[w - w}\w]ijda, (53) L” = dﬂ'] + C_l[dC - dO]Q” + Q,][dC - dO]TC_l
o . - Cdu]'vay - @/ VTdulc™, (63)
I =pC Q- QAQ - &+ OAw - Q' AQ"];C Ve,
(54) L/, =dQ + C™[dC - dO]Q} - {VTdV]
e e~ - Cdu]'VQ{ - Q;UTdV], (64)
I} =pC Q" - QAQ' - Q'\& - Q'\Q"];da,

(59 Ly =dQ; - [dV]'VQ + Q[dC - dO]"C™!

- [av]TuQ; - QfvTdulc™, (65)

I = [~ ARG - GA D - QAD],C Vel

(56) Ly =dQ - [dVIVO! - VT dV]
~ ~ ~ ~ - TUQ, - QU™
F:j, - p[ﬂw _ QIIAQ/ _ a’,xﬂm _ Q”')\Zo _ Q/I!AQH/]ijda, [dv] UQI] QIJ U [dV], (66)
(57)  where we used
where 0=[Q=C0,C%rayllm 0 Q=[O wiw= [C+ N O] (67
=C Qij]i,jZl,...K! and Q”E[Q”EQ”C Z;Il,jzll---K are In- 0 |
troduced to simplify multiplications, while\ =[Nl i =1, x
andw=[wjl]j j-1, x are matrices extended to an appropriate WU V1= C+do [dU]V 68
size; e.g., the same size as thatbbr Q. A is redefined as [U.vl= [dVI™U | +[dV]V |’ (68)
- - A: O
A= |:A|J = Cl/2|: 1] i|C1/2+ )\I]I:| where
0 0 ij=1,...K R
c=uUTU= { Q } e RIKHMIX{K+M}
e L RT T ’
The infinitesimal change of E@48) is given by
Q; +dQ; Q +dQ/ dQ dR
dH;; = {dw; )l +W| " b UwT-[u,v dC=[U+dU]uU +du —C:[ ,
Qi Qf
| S5 g v (59 nd
ds dR
— Ty —
where W=[U+dU, V+dV]eRN*N. Note that the con- dO =[du]'U ‘{ 0 0 }
ventional total differential is not applicable becal$és not _
differentiable. We also decompose this matrix Wyrather ~ To realizedH of Eq. (52) through Eq.(61) under the
than[U,V] becauseJ andV are also moving: givenU,V,dU, anddV, l;;=v; and
L. L. . ! . 4
dHj; =11 +W[ p :,J,]WT- (59) {L',f L:f,} = [F: F,'f,}
Here,Lj, Ljj, Lij, andLj are easily determined by calcu- ghould be satisfied. We then easily obtain an appropriate in-
lating finitesimal change o, ,Q’,Q", andQ" as
Ly L/
Lif Llﬂr] = [WIW]ZW[dH;j = {deyH IWIW'W]™, dw;j = ple ~ whw];da, (69)
ij Lij
(60)

dQ;; =pC Y10 - QAQ - & + dNo - Q'NQ"];C M
Note thatW[W'W]*WT is an identity matrix. By erasing - C[dC - dO]Q;; -, [dC - dO]'C™™
small terms such a®(d?), we obtain the following equation: J J

+CTdu]'V] + @/ VT[du]lC™, (70)
Lij L :
dH” :|ij| +[U,V] ” " [U,V] y (61) - — — —
Lij L dQ = pC VI - QAQ' - Q' Ne - Q' AQ"]da
where - C'[dC-dO]Q} + @/ VT[dV]+C[dUu]'VQy
lij = doyj, (62) +Q;UTdv], (71)

056120-7



INOUE, PARK, AND OKADA PHYSICAL REVIEW E 69, 056120(2004)

"— TO"—O"AO — = XO" — O"x O"..~-1/2 dQ’ ~ ~ o~~~ ~—~
inj - p[ﬂ Q"'AQ - oA - Q"D ] Cda | ij_ p[ﬂ// —O'AO - DNQ — Q///}\QH]”C—UZ
+[dVI'VQ; - Qf[dC~dO]'C ™ + [dV]TUQ; @
+QVTduIC, (72) ds d¢é dR
- da da da |CT, (77)
dQI/JH — p[ﬂm _ ﬁ”xﬁ, _ a‘,XQm _ QN!X&‘) _ erriﬂru]ijda 0 0
+[dV]'V + QIVTdV + [dVITUQ] + QIUT[dV].
(73 dQ” IO - ~ ~
] ) [ - p[ﬂm _ Q!!AQ! _ Z)AQW _ Q’”)\Z) _ QH/AQ/H]” .
We notice that, with respect td, the orders of each ele- da
ment of the matriceso, Q, ', Q”, and )" are at most (78)

0(1), O(1), O(1/VN), O(1/VN), andO(1/N) (see Appendix

B). This suggests thd is negligible at the large limit oN. . .

Actually, if we explicitly assume that the escape directions off hese equations guarantee tiéat, ", andQ2""are always
the student vectors are completely randon]l zero at the large limit oN, because the initial zero values of
~UC1UT]dU),=0 or equivalently(V'dU),=0 or (dV)=0, Qj, O, andQjf are preserved. Consequently, we adapt
the time integrations of the terms including’dV, VTdU andQ as the new order parameters, which successfully ex-

andVTdV converge to zero, and we obtain pressH. _ ,
Next, we consider thélGH term in Eq.(51) because a

dojj Il fluctuation ofE might b ignificant in thi -
dwjj _ B ) small fluctuation ofE might become significant in this sec
da plo — whol;, (74 ond order of theH term. Specifically, we evaluate the square

of the fluctuation ternk (to be exactw andQ also fluctu-
daQ; 1 N 1 ate, but their fluctuations do not become significant because
d =pC Q- QA0 - &+ @A - Q'AQ JiC these matrices are sufficiently small compared withIn a
similar way as above, we let

ds, do dR[!
-Clda da da|Q Y’
0 0 E? =[U,V U,V 79
[E<T; =1 ][Y,, Yy (U, V], (79
ds, d¢ oR
_Qij da dC( da C_l, (75) Whel’e
0 0
K
dQj U Y Yj Q0 Q0
Cc” 1/%:9’ QAQ' -Q'\ow - Q,AQW]" |: " r:/ = 2 " J " m m |-
e P ! Y; Yy dlegey enco;+orar
ds dé dr|’ (80)
-ct da da da | Qj, (76)
0 0 Then, an infinitesimal change & is
|
d[E?; = [[E + dE]Z - E?;
_ 2 Q; +dQ; [Q{(’j + dQ’k’j] [Q) +dQ;, [Q"’ + dﬂ”’] T
[Q”’ + dﬂ{ﬁ][ﬂﬁj + dQ{(’j] [Qj +dQi][C+ dC][Qk] + koJ] +[Qf +dQi ][Q”’ + dﬂ”’
Q_/ ﬂ”- Q Q///
- 2 [U’V]l ’I; " " ; " w [U’V]T (81)
1 Q Ki kCQk] + Qi

Substituting Eqs(70)—<73) for dQ’, dQ”, and dQ"’, and d¢ O
erasing small terms, we obtain an appropriate infinitesimal Qi Oy,
change onIj, Yi, Yii, and Y. Briefly, the point is that

[d€2 Jd€yy; is not negligible but because
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d¢ O
Udv]dv]'u=
[dV][dV] [ 0 0}
(see Appendix B Actually, we obtain
dy; = pC 20’0 - QAN Q" - O’ Q"AD
- Q'[A® + @N]Q"];,C Vda

+E{ 1 Qy; — C[dC - dO]Q; Oy + Q T'y;
k=1

d¢ 0
Q, Qy[dC-doJ'Ct+ Qik{ c()ﬁ 0]%} :
(82

We notice that each element ¥j; is initially zero, and be-
comesO(1), because

dé 0
Qik|:o 0:|ij

is O(1), whereas the other term¥;, Yi;, andYj/are consid-

ered to be always zero at the large limitof

We then let the following positive definite and symmetric

matrix

Y=0'Q" RK{K+M}><K{K+M} (83)

be another new order parameter, whaie[Yjj]; j-1, . k. In
short, we can write

[EZ]; -UY;UuT—0 (85)
or, equivalently,
ol +UQ;UT — Hy;, (86)

K
kE [wikl + UﬂikUT][(Ukjl + UQKJUT] + UY” UT — [Hz]”
=1
(87)
at the large limit ofN.
This Y is useful for estimating the matric&3’ and Q”,
which are required for both th®'[A@+ @\ ]Q” term in Eq.

(82) and theQ'XQ” term in Eq.(75). Intrinsically, an exact

PHYSICAL REVIEW E 69, 056120(2004)

=p{CY2Y - QAY - YAQ];C
-[VY[x@ + & ]VY ], j}da - Cc[dC - dO]Y;,

$ 0

0 :|Q'k]: (89

-Y;[dC-dOJ'Ct+ E Qlk[

Where\?E[YijEC”ZY”C”Z]H:L___K. In a similar manner,
we can substitute Eq88) for Eq. (75).

Finally, we obtain the new order parameter dynamics

through Eqs(74), (75), and(89) as

dw;;

o (90)

== plew - whwl;,

dQy;

d =p{CY1Q - QAQ - & + dA&];CV?
(2%

ds,d¢ dr]

—[\"YA\Y],J} CYda da da| O
0 0

ij

ds, dg R
_Qij da da
0 0

(91

dy; e mmm e
d—a'i =p{C Y 2Y - QAY - YAQ];C1?2
ds_d¢ dR
—[\'Y[)\w+w)\]\r’Y]} ct da de da | Yj
0 0

ds, dg dR|  x |de
-Yjj| da de da ct +Eﬂlk da

0 0 k=t 0 0

(92

Intuitively, in Egs. (90)«92), the terms includingo corre-

spond to the dynamics d¢f, whereas the terms including

ds, d¢ dR

da da da
0 0

restoration of2’ andQ” usingY is impossible, because the keep the component ¢i constant which is still expressible

number of elements df)’ andQ” is O(N), while that of Y

is O(1). Hence, we substitute one of the probable candidates

of Qi’j anin’j for the trueQ)’ andQ”; i.e., we use

’ " 1 oV N
Q=Q;T= ﬁ{[\"Y]ija VY Dk (88)

by ©Q or Y under the movement dfi. The term including

d¢
da
0 O

0

means the component &f is no longer expressible b

where n=(N-K-M)/K+M was assumed to be a natural under the escape movementlfinto the null space ob.

number. Equatiori84) certainly satisfies the necessary con-

dition given by Eq.(83). Substituting Eq(88) for Eg. (82),
we obtain

The dynamics of the usual order parameters for ANGD
given by Eq.(47) can be rewritten using the new order pa-

rameters in a manner similar to that for NGD:
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k=2

K= 74

x= 8

(@)

K=m32

K= 2 (i=1.2,...5)

(b) £

500000
o

[MCS]

L 1 1 1 1 1 1 I 1 L I 1
1000  [MCS] 0 1000 IMCS)

FIG. 2. Numerical results of the theory. Time evolution of the generalization errgrat01,p=0.01, andN=500.(a) SGD, (b) NGD,
and(c) ANGD. NGD and ANGD are not greatly affected by the angle of the teacher weight véeiorahereas SGD is.

°]
RT

|

(93)

K
dr. R
d—Rl =-n2 {wik<5kxj>z+ <5kZT>ZQiT<{ } }
o k=1 T j
K
a5 _ ™) Q0
g =- 7]2 wik<5ka>z+ <5kz >Z(2'ik
a k=1
dgi e
ELL = nzk% o 885,
dQ; _ds, , d5; , dd;
da  da da da’

where the subscripft ]; denotes thgth column. Note that
these usual order parameter dynamics are not affected by tiversion of ANGD. As this version of ANGD defined by Eq.
small fluctuation E (see Appendix ¢ Equations(90)—<93)
are the order parameter dynamics expressed by the ordeimulation results showed divergence of the network param-

parameters themselves.

IV. NUMERICAL RESULTS

respect to not only the learning curves but also the learning
failures. We also found that the performance of ANGD is
roughly comparable with that of NGD when/p is small.
Detailed conditions of these numerical results are given in
Appendix D.

First, we validated the theoretical motion equations by
using a simulation withN set to 500. The learning curves
(time evolution of the generalization erjasf the theory are
shown in Fig. 2c), while those of the simulation are shown
in Fig. 3(c). There were no significant differences between
the theoretical and the simulation results. With respect to the
two & rule, simulation results showed that those adopting this
rule were generally comparable with those not adopting this
rule, although they were slightly slower wherns large.(We
show only the simulation results for adoption of this ryle.

We also evaluated the learning failure of the simplified

(12) assumesp <1, a largep could cause problems. The

eters and the system failed to learn the teacher outputs with
large p [solid line in Fig. 4a)]. Figure 4b) shows the bor-
derline between this learning failure and the success areas
with respect to they and p conditions. Roughly, the failure

We numerically validated the theoretical results througharea corresponded o= 0.05. Our numerical solution of the
simulation, and evaluated the performance of the simplifiedheory successfully reproduced these learning failures in the
version of ANGD. The numerical results obtained using thesimulation, which are shown as the dotted lines in Figa) 4
theory were comparable with those of the simulation withand 4b). (We considered a learning failure to have occurred

10°F R E T ]
£ (2) & (b) £
107% | ¥=72 107% 1073
K= 14
4 K= ”/8 4 4
107 107 10°
10°% k=32 | 1gF . 107 K= 732
K=42 (i=12,.5)
1 1 1 I s [ AN NN TN SN SN R SN S S 1 1 L I IR [ A T TN TR TR TR N N S S 1 1 1 1 L I
0 500000 [MCS] 0 500 1000 [MCS] 0 500 1000 [MCS]
a a a

FIG. 3. Simulation results. Time evolution of the generalization errar=0.01,p=0.01, and\=500.(a) SGD, (b) NGD, and(c) ANGD.
The results obtained using the theory in Fig. 2 are comparable to the simulation results.
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0 —— V. CONCLUSION

A @ 1| e ) .

i We have developed a order parameter expression for a
simplified version of adaptive natural gradient learning in
which the learning dynamics can be expressed using only a
107 few order parameters. We numerically validated this theory

1072 | failure

10 through simulation and confirmed that this theory success-
P ) fully reproduces not only the learning curve, but also the

B — theory i learning failure. We found that the ANGD performance is
. Ty e generally comparable with that of NGD. We also found

0 w 200(cs] %10 " ' that we can avoid the plateau in ANGD by making the up-

date rate of the network parametgiow enough compared
FIG. 4. Learning failure of the simplified version of ANGD with {0 the update rate of the inverse of the Fisher information

N=100. (a) Time evolution of the generalization error under the Matrix p.

conditions of »=0.02 andp=0.1. (b) Contour graph under various

values ofn andp. The probability of learning failure is shown with

respe_ct to the S|mulat|on results because the simulation vx_/as a sto- This work was partially supported by Grant-in-Aid for

chastic process. Numerical results of the theory well predicted th%cientific Research on Priority Areas, Grant No. 14084212,
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learning failure in the simulation. and Grant-in-Aid for Scientific ResearctC), Grant No.
14580438.
with the theory when the correlation matrix of the weight APPENDIX A: CONVERGENCE OF MATRICES

vectors,C, violated its positive definiteness.

Next, we compared the _Iearnlng curves_between SGD, In this paper, we sometimes refer to matrix or vector
NGD, and ANGD under various teacher weight vector cor-«convergence” in the sense of each element, although this
relations.(The angle between teacher weight vectors is deword is usually used in the sense that the norm of the differ-
noted asc.) Figure 2 shows the learning curves faj SGD,  ence between the series of concern and a given matrix or
(b) NGD, and(c) ANGD. We can see that ANGD had almost yector converges to zero. As we are dealing with the large
the same performance as NGD and does not have any sevaj@it of the input dimensiorN, the average oN RN*N ma-
plateaus. Moreover, ANGD was not greatly affected by theyrices orN RN vectors often converges in the sense of each
teacher correlations, although SGD was. ~ element, but does not in the sense of the norm. We can see

Finally, we reveal the key condition affecting the learning gne example of this phenomenon Jn dynamics in SGD;
plateau in ANGD. NGD is known to have a plateau when theg|though each element of its fluctuation is small, the norm of
learning rate is too large[6]. We found that a plateau thjs fluctuation is not zero but¢; [see Eq(21) and Fig. 1.
occurs in ANGD not only in the large case, but also in the |5 the following, we discuss the convergence of maffix
small p case. Figure @) shows the time cost of learning ysed in Eq(44).
under a wide range of andp. This contour graph suggests | et us estimate the order &, specifically, the following
that a plateau occurs wheyip is large. Our simulation study matrix:
also supported this findingFig. 5b)]. This phenomenon .

may be interpreted to mean th@at! cannot follow a change 12 [V V]

in the trueG™t if % is relatively large compared to. (A1)

wn=1
where Vi®W=[g" (3T £§#];_; e RNKis a random vec-
10° 107 tor dependent on the random inp&t- N(0,1). Here, the
P @1 P ® superscript ok denotes not the time but simple identifica-
r tion. The diagonal element of each block of this matrix, e.g.,
$ the (k,k) element of th€(i,j) block, is

N
1
N2 O QTG GTEHENY. (A2)
o=
/°° /'b°° If we dropg’(JiT_gf“))g_’(JjTéf‘?), because it i©(1), we notice
1073 — e 105 — . that the probability distribution of this element is given by an
n n N-freedomy-square distribution, i.e., its moment-generating
function is defined as

FIG. 5. Contour graphs of the time cost neededédpto reach

;<1077 for various values ofy andp in ANGD. Here,x was set 1 ||V

to /8. (a) Results obtained using the theory afiij simulation p)=]1-2 Nt : (A3)
results. Timea was normalized as 109a. The plateau length was

strongly dependent on/p. Consequently, we get the variance of this element as
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a 2
Eln o(t) t_O: N (A4)

The nondiagonal element of each block, e.g., thg) ele-
ment of the(i,]j) block, is

N
1
Nglgf(JiTg(M))gf(JjTg(M))ﬁu)gfm_ (A5)

Similarly, we notice that this distribution is given by an av-
erage ofN modified Bessel functions of the second kind.
Then, we get the moment-generating function

FIG. 6. Intuitive schema of the null space BfandU +dU.

2 [-N/2
o) = {1 B {Nt} ] (A8) ' = _[1 [U+dUJ[C+dCT U +dU]TIU e RN*{k*M)

and the variance as N/ (B4)

Therefore, each element of the matrix _converges a
O(1/VN), but the Frobenius norm diverges@é/N) because
this matrix hadNK X NK elements. In other word&F — G

ﬂere,\lf’ is the orthogonal component &f to the U+dU
subspace, while¥ is the normalized¥’, i.e., WTW=]|,

with respect to the Frobenius norm. to V+dV. However, the column vectors @ andW¥ do not

necessarily coincide with some of the column vectors/of
APPENDIX B: ORDERS OF w,Q,Q',Q", AND Q" andV+dV, respectively, i.e., some rotation or mirror image
conversion might be required. Hence, we introduce an appro-
We prove that, with respect 4, the orders of each ele- priate orthonormal matrij € RINK-MXN"K-M} and explic-
ment of the matricesn,2,Q',Q", and Q" are at most itly expressV,V+dV, anddV as
0(1),0(1),0(1/yN),0(1/YN), and O(1/N). First, we

evaluate the order of th&/TdV,V'dU, and V'dV terms, V=[®,V']M, (B5)
which are used in Eq$70)—(73). We especially pay attention
to the fact that some of the inner products between infinitesi- V+dvV=[W,V']M, (B6)
mal changes ofN-dimensional vectors are ndd(d?) but
0O(d), e.g.,

dv =[W¥ - ®,0]M, (B7)

dgp O
(()ﬁ 0] e RIKHMBX{KeM} whereV’ is one of the set of orthonormal bases of the null

[dU]TdU =d¢’ = [
space ofU andU+dU. Note that each of

We then consider Eq$69)—73).

First of all, we explicitly determine/, the orthonormal [uc*2vi,
bases of the null space of the weight vectors, udihgnd
dU. We find that some of the orthonormal bases of the [uc2e, v,
subspace can be expressed udihngnddU as
O =P'[D TP/ V2 g RNXKME (B1) [[U+dUJ[C+dC] Y2V +dV],
where -1/2
[[U+dU][C+dC] 2w V], (B8)
@' =[I -UCWUT]dU e RN*IK+MI (B2)

consists of the orthonormal bases of the whole space. If we
Here,®’ is the orthogonal component of tli) to U sub-  decomposéV as
space, whiled is the normalizedd’; i.e., ®'d=| (see Fig.
6). (We assume the rank @lU is K+M for simplicity, al- Mo
though it is actuallyK.) Note thatUC™'UT is a projection M, |’
matrix to theU subspace. In a similar manner, we also find
that some of the orthonormal bases of ¥edV subspace we can rewrite EqsB5)—(B7) as
can be expressed usitganddU as
\I,E‘II![‘II/Tqil]-l/ZE RNX{KHVI}, (Bs) V_[(I)'V ]M _(I)M0+V Ml' (Bg)

where V+dV=["VIM=¥My+V'M,, (B10)
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dv=[¥ - ®,0]M =[W¥ - ®]M,. (B11)  O(1). Matrix normalization denoted with tildée.g., Q) is
V' andM contain some arbitrariness, althoudiM, is well considered not to change the order. Matrix size extension
defined. However, we can avoid using them as shown belovxge 9., @) is also considered not to change the order. As the
We can then calculate the'dU,[dV]U, and [dV]V Initial value,ofH |s” defined asma unit matrix, we can let
terms. We find that the norms of the column vectors of =1,02=0,41'=0,40"=0, and2"=0 as initial values. Then,

VTdU we natice the following(1l) w is O(1) from the initial state.
' (2) Then, Q soon become®(1), becaused();; has aO(1)
[dU]"'VVTdU = [dU]"[@,V'IMM T[®,V']"dU = d¢’ term -@+®A®. (3) Then, Q' and Q" soon _become

(B12) O(l/\ N), becausedﬂ’] and dﬂ’j have anO(1/yN) term

Q;UTdv] and[dV]TUQ”, respectively(4) Then, Q" soon
becomesO(l/\ N), becausedﬂ”’ has an O(1/N) term
[dV]TUQ[+Q;UTdV]. (5) There is no contradiction if we
assume these orders are preserved.

areO(1) with respect toN. Note thatMM =1 by its defini-
tion. As the orthonormal matri¥ does not change a matrix
norm, each element of thi-dimensional vector®/TdU is
O(l/\fﬂ). In a similar manner, we can calculate the norm of
[dV]TU:

UTdV][dV]'TU=UT[¥ - ®,0]MM [¥ - ®,0]'U =d¢’. APPENDIX C: EFFECT OF E
(B13)

This also means that each element[d¥]'U is O(l/\s“ﬁ).
These results are used after Eg3). Equation(B13) is also

0 Q.
used to derive Eq(82). We also find that each element of Ej= [U,V]L},, Q:},}[U v]T (C1
[dV]V is O(1/N?), because i

We find that the fluctuation terid defined by Eq(50) as

VTdvV]=MT[®,V'] ¥ - d,0]M does not affect the usual order parameter dynamics under the
assumption that each element 6, Qf, and Q' are
_ MT{A 0 } M= — MEAMO (B14) O(1/N), O(1/V N), andO(1/y N) respec'uveb(see Appendlx
0 ’ B).

uhere acn dement on=[ay T K Heo-a0] OO egighle it pet o e e o
+[dO]C™1dO"|[d¢’T¥? is O(1), and these elements are

are 0 as shown:
scattered tdN X N elements byM.
Next, we consider the orders of Eq§9)—(73): ( 5K§TE B)e=( 5K§TVQNTUTBJ_>§

doj = plo ~ whw]jda, (B19) = (429 (6)) {0 )p i UTB; =0,
dQ; =pC Y10 - OAQ - & + @Ad - O'NQ"];CVda
- C™[dC - dO]Q;; - ©;[dC~dO]'C™
+Cdu]'VQ{ + Qi VTdulC™, (B16)

(BEEjie= (8 EVOIUTI),
= (€29’ (%)) Ao, QU3 =0, (C2)

where v=VTé~N(0,l) is independent of z=UT¢
=[Xq, ... Xc) Y1, - ymlT, and(w),=0.

o “UZO" —OAO —O'X— O’ m..
dey;; = pC 10'-QAQ - QN6 - Q' Jjda E is also negligible with respect to the dynamicsgnfAll

-C{dc- do]Q +Q’VT[dv] +C 1[du]TVQ”’ the terms includinde can be expressed as
+Q;UTav], (B17)
1 . A A .
o ~— ~ N x6&'[U,V] AT A [U,V]'§ (C3
dQj = p[Q" - Q"AQ - A" - Q"N C Mo £
+[dV]'VQ] - Q{[dC - dO]'C™ + [dV]TUQ; where
+QiVTdulc™, (B18) A A
— T T
[A” A”’] =HHj — [wy + UQuU ][y + UQ,UT].

QH/ - [QH/ Ql/AQ/ — whﬂl(/ Q’”hw QH/AQIN]IJda

+[dv]'VQY + QVTdV] +[dV]TUQ .
Then, we notice that(§8&'UAUE): is O(1), while
T 3
+ ;U Tdv]. B19  (5a£UAVE, and (48EVA'UE), are 0. Moreover,
Each element of the matric&s dC, anddO is considered to (5k5|§TVA”’V§>§ is at mostO(1) because each element of
be O(1) with respect tdN. A andA are also considered to be A",

(C4
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"= wikﬂﬁ’ + ) Qff + Q;I’(CQj’l +QNCQl,  (CH with re_spect to the student vyeight vectors were determined
] ) according to the corresponding expected values of random
is O(1/N). As all the terms in Eq(C3) are scaled by IN, we  ¢chojced ~ A0, (1/N)I), e, Q;=1,Q;=0, andR;=0. Only
can ignore them. Therefore, we can completely ignore thep”_(i # ), the inner products between the student weight vec-
effect of E in the usual order parameter dynamics. tors and noncorresponding teacher vectors, were set to a
small negative valud; —r;; to break the permutation sym-

APPENDIX D: DETAILED CONDITIONS metry a little, where we adopdea 1 standard deviation rule,
FOR NUMERICAL RESULTS ie.,
For numerical results, we considered a realizable case, in ——— T+ T, — 2T;;

rj =\Van(R; -R;) =\ —+—, (D1

which the numbers of the hidden units for both the teacher N

and student networks were set tdR=M=2). With respect

to the order parameter dynamics, the initial conditions of thevhere Vaj(x) denotes the variance of with respect toJ.
usual order parameters were set as follows. The squarEhen, we solved the order parameter equations using the
lengths of all teacher weight vectofg were set to 1, while Runge-Kutta method with time intervala=0.1. With re-

the angle between the teacher weight vectors, spect to our simulation, the initial states Bfand J were
=arccod ,/ \“”Tl,lTZ,Zv was set to a moderately correlated determined to satisfy the conditions of the order parameters
value, /8, unless otherwise stated. The initial conditionsabove.
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